A Text-Based Scheduled Reduction Intervention for Smokeless Tobacco Cessation

基于文本的无烟烟草戒烟计划减少干预措施

基本信息

  • 批准号:
    10227026
  • 负责人:
  • 金额:
    $ 44.88万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-09-01 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

Project Summary Smokeless tobacco (chew or dip) use remains prevalent in rural and medically underserved populations, leading to increased rates of tobacco-related cancers and chronic disease. Yet, underserved tobacco users who want to quit have access to few innovative interventions. This is a significant missed opportunity to address health disparities in this group. Scheduled Gradual Reduction (SGR) may be an effective intervention to help smokeless tobacco users quit. SGR addresses common cessation challenges faced by smokeless tobacco users including the strong cue-based component of use and strong withdrawal symptoms. The SGR method been minimally studied in this population of tobacco users and represents an innovative new direction in the field. SGR involves gradually tapering smokeless tobacco use through lengthening use intervals based on an individually tailored schedule. SGR helps smokeless tobacco users learn to refrain from chew/dips that are in environmental cues by following the schedule and gradually reducing their use. Delivering SGR interventions via text messaging is an innovative way to increase the reach of this cessation intervention in underserved populations. Therefore, we propose a randomized clinical trial to evaluate the efficacy of a SGR Intervention (SGR intervention plus text-based support messages) vs. control intervention (text-based support messages) in decreasing smokeless tobacco use. The SGR group (N=250) will receive a six-week SGR program and text-based support messages. The control group (N=250) will receive text-based support messages. The primary outcome will be self-report smokeless tobacco cessation at 6 months. We will also test the efficacy of the text-based SGR intervention compared to support messages only on changes in withdrawal, craving, self-regulation and restraint across the 6-month period and explore whether changes in withdrawal, craving, self-regulation and restraint mediate intervention effects on self- reported cessation at 6 months post-intervention. Results of this study can be disseminated broadly to help smokeless tobacco users quit with the ultimate goal of increasing access to efficacious cessation interventions and eliminating cancer health disparities.
项目摘要 无烟烟草(咀嚼或蘸烟)的使用在农村和医疗服务不足的人群中仍然很普遍, 导致与烟草相关的癌症和慢性病的发病率增加。然而,服务不足的烟草使用者 那些想戒烟的人几乎没有机会获得创新的干预措施。这是一次重大的错失机会 解决这一群体的健康差距问题。按计划逐步减少(SGR)可能是一种有效的 帮助无烟烟草使用者戒烟的干预措施。SGR解决了以下人员面临的常见戒烟挑战 无烟烟草使用者,包括基于强烈暗示的使用和强烈戒烟 症状。SGR方法在这一烟草使用者群体中进行的研究最少,代表了一种 创新领域新方向。SGR涉及通过以下方式逐步减少无烟烟草的使用 根据单独定制的时间表延长使用间隔。SGR帮助无烟烟草使用者 通过遵循时间表并逐渐减少,学会避免咀嚼/浸泡在环境暗示中 它们的用途。通过短信提供SGR干预是一种创新的方式,可以扩大这一领域的覆盖范围 在服务不足的人群中进行戒烟干预。因此,我们建议进行随机临床试验,以 评估SGR干预(SGR干预加上基于文本的支持消息)与对照的有效性 减少无烟烟草使用的干预措施(基于短信的支持信息)。SGR组(N=250) 将收到为期六周的SGR计划和基于文本的支持消息。对照组(N=250)将 接收基于文本的支持消息。主要结果将是自我报告的无烟烟草戒烟 六个月。我们还将测试基于文本的SGR干预与支持消息的效果 仅就戒断、渴求、自律和克制在6个月期间的变化进行探讨 退缩、渴求、自我调节和约束的变化是否在自我干预效应中起中介作用 报告在干预后6个月停止治疗。这项研究的结果可以广泛传播,以帮助 无烟烟草使用者戒烟的最终目标是增加获得有效戒烟干预的机会 以及消除癌症健康差距。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Devon Noonan其他文献

Devon Noonan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Devon Noonan', 18)}}的其他基金

A Text-Based Scheduled Reduction Intervention for Smokeless Tobacco Cessation
基于文本的无烟烟草戒烟计划减少干预措施
  • 批准号:
    10703375
  • 财政年份:
    2019
  • 资助金额:
    $ 44.88万
  • 项目类别:
A Text-Based Scheduled Reduction Intervention for Smokeless Tobacco Cessation
基于文本的无烟烟草戒烟计划减少干预措施
  • 批准号:
    10468052
  • 财政年份:
    2019
  • 资助金额:
    $ 44.88万
  • 项目类别:
Addressing Tobacco Use Disparities through an Innovative Mobile Phone Intervention: The textto4gosmokelesstobacco
通过创新的手机干预措施解决烟草使用差异:textto4gosmokelesstobacco
  • 批准号:
    8957285
  • 财政年份:
    2015
  • 资助金额:
    $ 44.88万
  • 项目类别:

相似海外基金

DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 44.88万
  • 项目类别:
    Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 44.88万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 44.88万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 44.88万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 44.88万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 44.88万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 44.88万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 44.88万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 44.88万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 44.88万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了