Fast Multichannel Magneto-thermal Genetics

快速多通道磁热遗传学

基本信息

  • 批准号:
    10401691
  • 负责人:
  • 金额:
    $ 214.55万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-09-08 至 2025-08-31
  • 项目状态:
    未结题

项目摘要

Abstract Precisely timed activation of genetically targeted cells is a powerful tool for studying neural circuits. Neuronal modulation (activating or inhibiting select neurons) allows us to investigate how neural activity causes changes in animal behavior. Recent work has led to many tools for genetically targeted neuromodulation; however, the ideal technology should be: 1) Wireless – to enable unrestricted animal behavior and social interactions. 2) Injectable – to minimize tissue damage and ease implementation associated with implants. 3) Fast – (sub-second response times) to synchronize neural stimulation with behaviors or sensory queues. 4) Multiplexed – so that different brain areas, cell types, or animals can be modulated within the same arena. A technology with these capabilities will be a powerful tool for discovering causal relationships between neural circuit activity and behavior. For example, researchers will be able to manipulate the activity of entire neural circuits distributed throughout the brain as animals interact with one another and their environment. Through these experiments, researchers will be able to discover how to select neurons to participate in specific behaviors. To create this type of neuromodulation technology, we will develop the first fast magnetothermal genetics. This technique relies on alternating magnetic fields to heat nanoparticles that activate thermoreceptors expressed in genetically targeted cells. While similar magnetothermal approaches have been recently demonstrated in mice and C. elegans, response latencies have remained in excess of 10 seconds making it impossible to precisely synchronize neural modulation with behaviors or sensory cues. We propose to use highly sensitive rate-dependent thermoreceptors and optimized nanoparticles to achieve magnetic control of genetically targeted cells with sub-second latency. We also propose to make magnetic nanoparticles significantly more selective to specific magnetic field amplitudes and frequencies by tuning their composition. These optimizations will enable multichannel remote stimulation of independent neural circuits or animals located in close proximity. Our tools will bring magnetogenetics closer to the temporal resolution and multiplexed stimulation possible with optogenetics while maintaining the minimal invasiveness and deep-tissue stimulation only possible by magnetic control.
抽象的 精确定时激活基因靶向细胞是研究神经回路的有力工具。神经元调节(激活或抑制选定的神经元)使我们能够研究神经活动如何导致动物行为的变化。最近的工作已经产生了许多用于基因靶向神经调节的工具;然而,理想的技术应该是: 1)无线——实现不受限制的动物行为和社会互动。 2) 可注射——最大限度地减少组织损伤并简化与植入相关的实施。 3) 快速——(亚秒级响应时间)使神经刺激与行为或感觉队列同步。 4) 多路复用——以便不同的大脑区域、细胞类型或动物可以在同一区域内进行调节。 具有这些功能的技术将成为发现神经回路活动和行为之间因果关系的强大工具。例如,当动物彼此及其环境相互作用时,研究人员将能够操纵分布在整个大脑中的整个神经回路的活动。通过这些实验,研究人员将能够发现如何选择神经元参与特定行为。 为了创造这种类型的神经调节技术,我们将开发第一个快速磁热遗传学。该技术依靠交变磁场来加热纳米颗粒,从而激活基因靶向细胞中表达的温度感受器。虽然类似的磁热方法最近已在小鼠和秀丽隐杆线虫中得到证实,但响应延迟仍然超过 10 秒,使得神经调节与行为或感觉线索不可能精确同步。我们建议使用高度敏感的速率依赖性温度感受器和优化的纳米粒子,以亚秒级延迟实现对基因靶向细胞的磁控制。我们还建议通过调整磁性纳米粒子的成分,使磁性纳米粒子对特定磁场振幅和频率具有更大的选择性。这些优化将使独立神经回路或邻近动物的多通道远程刺激成为可能。 我们的工具将使磁遗传学更接近光遗传学可能的时间分辨率和多重刺激,同时保持只有通过磁控制才能实现的最小侵入性和深层组织刺激。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jacob T. Robinson其他文献

Light sheet illumination with an integrated photonic probe
使用集成光子探针进行光片照明
Role of radiation and surface plasmon in optical interactions between nano-objects on metal surface
辐射和表面等离子体在金属表面纳米物体之间光学相互作用中的作用
Fluidic microactuation of flexible electrodes for neural recording
用于神经记录的柔性电极的流体微驱动
  • DOI:
    10.1101/155937
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Flavia Vitale;Daniel G Vercosa;Alexander V. Rodriguez;S. Pamulapati;F. Seibt;Eric Lewis;J. S. Yan;K. Badhiwala;Mohammed Adnan;G. Royer;M. Beierlein;C. Kemere;M. Pasquali;Jacob T. Robinson
  • 通讯作者:
    Jacob T. Robinson
Ultrahigh spatiotemporal resolution fluorescence molecular tomography with a sparsity constrained dimensional reduction reconstruction model
稀疏约束降维重建模型的超高时空分辨率荧光分子断层扫描
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    H. K. Kim;Ankit Raghuram;Yongyi Zhao;A. Veeraraghavan;Jacob T. Robinson;A. Hielscher
  • 通讯作者:
    A. Hielscher
Thermal stimulation temperature is encoded as a firing rate in a Hydra nerve ring
热刺激温度被编码为水螅神经环中的放电率
  • DOI:
    10.1101/787648
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    C. Tzouanas;Soonyoung Kim;K. Badhiwala;B. Avants;Jacob T. Robinson
  • 通讯作者:
    Jacob T. Robinson

Jacob T. Robinson的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jacob T. Robinson', 18)}}的其他基金

Fluidic microdrives for minimally invasive actuation of flexible electrodes
用于柔性电极微创驱动的流体微驱动器
  • 批准号:
    9395642
  • 财政年份:
    2017
  • 资助金额:
    $ 214.55万
  • 项目类别:

相似海外基金

Quantification of Neurovasculature Changes in a Post-Hemorrhagic Stroke Animal-Model
出血性中风后动物模型中神经血管变化的量化
  • 批准号:
    495434
  • 财政年份:
    2023
  • 资助金额:
    $ 214.55万
  • 项目类别:
Small animal model for evaluating the impacts of cleft lip repairing scar on craniofacial growth and development
评价唇裂修复疤痕对颅面生长发育影响的小动物模型
  • 批准号:
    10642519
  • 财政年份:
    2023
  • 资助金额:
    $ 214.55万
  • 项目类别:
Bioactive Injectable Cell Scaffold for Meniscus Injury Repair in a Large Animal Model
用于大型动物模型半月板损伤修复的生物活性可注射细胞支架
  • 批准号:
    10586596
  • 财政年份:
    2023
  • 资助金额:
    $ 214.55万
  • 项目类别:
A Comparison of Treatment Strategies for Recovery of Swallow and Swallow-Respiratory Coupling Following a Prolonged Liquid Diet in a Young Animal Model
幼年动物模型中长期流质饮食后吞咽恢复和吞咽呼吸耦合治疗策略的比较
  • 批准号:
    10590479
  • 财政年份:
    2023
  • 资助金额:
    $ 214.55万
  • 项目类别:
Diurnal grass rats as a novel animal model of seasonal affective disorder
昼夜草鼠作为季节性情感障碍的新型动物模型
  • 批准号:
    23K06011
  • 财政年份:
    2023
  • 资助金额:
    $ 214.55万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Longitudinal Ocular Changes in Naturally Occurring Glaucoma Animal Model
自然发生的青光眼动物模型的纵向眼部变化
  • 批准号:
    10682117
  • 财政年份:
    2023
  • 资助金额:
    $ 214.55万
  • 项目类别:
A whole animal model for investigation of ingested nanoplastic mixtures and effects on genomic integrity and health
用于研究摄入的纳米塑料混合物及其对基因组完整性和健康影响的整体动物模型
  • 批准号:
    10708517
  • 财政年份:
    2023
  • 资助金额:
    $ 214.55万
  • 项目类别:
A Novel Large Animal Model for Studying the Developmental Potential and Function of LGR5 Stem Cells in Vivo and in Vitro
用于研究 LGR5 干细胞体内外发育潜力和功能的新型大型动物模型
  • 批准号:
    10575566
  • 财政年份:
    2023
  • 资助金额:
    $ 214.55万
  • 项目类别:
Elucidating the pathogenesis of a novel animal model mimicking chronic entrapment neuropathy
阐明模拟慢性卡压性神经病的新型动物模型的发病机制
  • 批准号:
    23K15696
  • 财政年份:
    2023
  • 资助金额:
    $ 214.55万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
The effect of anti-oxidant on swallowing function in an animal model of dysphagia
抗氧化剂对吞咽困难动物模型吞咽功能的影响
  • 批准号:
    23K15867
  • 财政年份:
    2023
  • 资助金额:
    $ 214.55万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了