Leveraging data synthesis to identify optimal and robust strategies for HIV elimination among substance-using MSM
利用数据合成来确定消除吸毒 MSM 中艾滋病毒的最佳和稳健策略
基本信息
- 批准号:10402179
- 负责人:
- 金额:$ 73.19万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-05-01 至 2027-02-28
- 项目状态:未结题
- 来源:
- 关键词:AIDS preventionAccountingAcquired Immunodeficiency SyndromeAddressAdherenceAlcohol consumptionAlcoholsBehaviorBehavioralCharacteristicsCohort StudiesCollaborationsComplexComputer softwareContinuity of Patient CareDataData SetData SourcesDecision MakingDependenceDrug usageEnsureEpidemicEpidemiologyEthnic OriginFundingGoalsHIVHIV InfectionsHIV riskHealthHigh Performance ComputingIncidenceIndividualInterventionKnowledgeLaboratoriesLengthMethamphetamineModelingModificationNational Institute of Drug AbuseNetwork-basedObservational StudyPathway AnalysisPathway interactionsPersonsPopulationPopulation DynamicsPositioning AttributePreventionRaceReportingResearchResearch PersonnelResearch PriorityResourcesRiskRisk BehaviorsRisk FactorsRisk ReductionServicesSex BehaviorSexual PartnersSourceStructureSubgroupSurveysUncertaintyUnited StatesUnited States National Institutes of HealthWorkalcohol effectcomparative effectiveness trialcomputerized toolscondomscostdesignexperienceexperimental studyflexibilityhigh risk populationimprovedinsightmedication compliancemen who have sex with menmethamphetamine usemodel developmentnovelopen sourcepreventprotective factorsreduced substance usesexual risk behaviorsubstance usesuccesstransmission process
项目摘要
Project Summary
Alcohol and methamphetamine use increases risk of HIV among men who have sex with men (MSM) and
numerous interventions have been developed to decrease HIV acquisition and transmission among substance
using MSM. Yet, despite a considerable body of research documenting these associations, substantial
uncertainty remains regarding the specific behavioral pathways between substance use and HIV that are most
responsible for this elevated risk (e.g., condom use, sexual partner selection, or HIV medication adherence).
Without this knowledge, it is difficult to identify the extent to which substance use drives HIV among MSM or
estimate the population level impact of interventions among substance using MSM. In addition, substance use,
adherence, risk reduction, and combined interventions have all shown excellent promise to reduce HIV
incidence, but large-scale comparative effectiveness trials are extremely challenging and costly and can
seldom comprehensively examine the unique value of these interventions to specific subgroups (e.g., by
race/ethnicity or age). Accordingly, this project seeks to 1) synthesize data on the relationship between alcohol,
methamphetamine, and HIV among MSM, including the impact of substance use on HIV risk behavior and the
prevention-care continuum, 2) estimate the plausible range and sources of HIV infections attributable to
alcohol and methamphetamine use among MSM using a principled and widely-used approach to network
epidemic models (i.e., EpiModel), and 3) determine optimal and robust strategies for reducing HIV incidence
among substance using MSM. For each aspect of this work, we will leverage advanced statistical and
computational tools to rigorously calibrate our models, validate them against independent data sources, and
perform extensive sensitivity analysis. To increase the usefulness of these models for real-world decision
making, we will utilize uncertainty quantification to ensure the identified strategies are most likely to succeed
after accounting for potential inaccuracy in our model parameters and assumptions. All model development will
be conducted using open-source software enabling easy replication, modification, and extensions by other
researchers. The project's team is exceptionally well positioned to achieve these goals with expertise spanning
network analysis, drug use epidemiology, epidemic modeling, and high-performance computing. Finally,
dissemination activities are designed to directly inform key stakeholders in order to reduce HIV incidence and
maximize the impact of this project on HIV elimination efforts.
项目总结
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Patrick Francis Janulis其他文献
Three limited interaction approaches to understanding the epidemiology of HIV among YMSM in the US
- DOI:
10.1186/s12889-024-20872-4 - 发表时间:
2024-12-18 - 期刊:
- 影响因子:3.600
- 作者:
Rebecca Schnall;Dustin T. Duncan;Lisa M. Kuhns;Patrick Francis Janulis;Michael Almodovar;Olivia R. Wood;Fengdi Xiao;Patrick R. Veihman;Robert Garofalo - 通讯作者:
Robert Garofalo
Patrick Francis Janulis的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Patrick Francis Janulis', 18)}}的其他基金
Leveraging data synthesis to identify optimal and robust strategies for HIV elimination among substance-using MSM
利用数据合成来确定消除使用药物的 MSM 中的 HIV 的最佳且稳健的策略
- 批准号:
10612874 - 财政年份:2022
- 资助金额:
$ 73.19万 - 项目类别:
Implementing and Evaluating a Machine Learning Tool for Entity Resolution in Drug Use and Sexual Contact Networks of YMSM
实施和评估用于 YMSM 吸毒和性接触网络中实体解析的机器学习工具
- 批准号:
9348928 - 财政年份:2017
- 资助金额:
$ 73.19万 - 项目类别:
相似海外基金
Unraveling the Dynamics of International Accounting: Exploring the Impact of IFRS Adoption on Firms' Financial Reporting and Business Strategies
揭示国际会计的动态:探索采用 IFRS 对公司财务报告和业务战略的影响
- 批准号:
24K16488 - 财政年份:2024
- 资助金额:
$ 73.19万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Mighty Accounting - Accountancy Automation for 1-person limited companies.
Mighty Accounting - 1 人有限公司的会计自动化。
- 批准号:
10100360 - 财政年份:2024
- 资助金额:
$ 73.19万 - 项目类别:
Collaborative R&D
Accounting for the Fall of Silver? Western exchange banking practice, 1870-1910
白银下跌的原因是什么?
- 批准号:
24K04974 - 财政年份:2024
- 资助金额:
$ 73.19万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
CPS: Medium: Making Every Drop Count: Accounting for Spatiotemporal Variability of Water Needs for Proactive Scheduling of Variable Rate Irrigation Systems
CPS:中:让每一滴水都发挥作用:考虑用水需求的时空变化,主动调度可变速率灌溉系统
- 批准号:
2312319 - 财政年份:2023
- 资助金额:
$ 73.19万 - 项目类别:
Standard Grant
A New Direction in Accounting Education for IT Human Resources
IT人力资源会计教育的新方向
- 批准号:
23K01686 - 财政年份:2023
- 资助金额:
$ 73.19万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
An empirical and theoretical study of the double-accounting system in 19th-century American and British public utility companies
19世纪美国和英国公用事业公司双重会计制度的实证和理论研究
- 批准号:
23K01692 - 财政年份:2023
- 资助金额:
$ 73.19万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
An Empirical Analysis of the Value Effect: An Accounting Viewpoint
价值效应的实证分析:会计观点
- 批准号:
23K01695 - 财政年份:2023
- 资助金额:
$ 73.19万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Accounting model for improving performance on the health and productivity management
提高健康和生产力管理绩效的会计模型
- 批准号:
23K01713 - 财政年份:2023
- 资助金额:
$ 73.19万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
New Role of Not-for-Profit Entities and Their Accounting Standards to Be Unified
非营利实体的新角色及其会计准则将统一
- 批准号:
23K01715 - 财政年份:2023
- 资助金额:
$ 73.19万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Improving Age- and Cause-Specific Under-Five Mortality Rates (ACSU5MR) by Systematically Accounting Measurement Errors to Inform Child Survival Decision Making in Low Income Countries
通过系统地核算测量误差来改善特定年龄和特定原因的五岁以下死亡率 (ACSU5MR),为低收入国家的儿童生存决策提供信息
- 批准号:
10585388 - 财政年份:2023
- 资助金额:
$ 73.19万 - 项目类别: