Rational design of drug combinations to target chemotherapy resistance in high-grade serous ovarian cancer via metabolomic profiling of patient-derived organoids

通过患者来源类器官的代谢组学分析,合理设计药物组合,以针对高级别浆液性卵巢癌的化疗耐药性

基本信息

  • 批准号:
    10401850
  • 负责人:
  • 金额:
    $ 8.48万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-07-01 至 2024-06-30
  • 项目状态:
    已结题

项目摘要

Project Summary/Abstract This resistant disease rates women, metabolomics resistance, of algorithm To regulatory of organoids. identified therapies project aims to develop a novel, interdisciplinary framework for the designed reprogramming of drug- tumors towards a responsive state. This pilot will focus on high-grade serous ovarian cancer, a with up to 20% o patients being refractory to primary treatment with carboplatin, and 80% relapse of initially responsive patients. We will obtain primary tumor tissue rom 12 refractory and 12 responsive grow patient-derived organoids as a personalized in vitro model of the patients' tumors, and perform profiling on both tissue samples and organoids. This will allow us to identify metabolic states of which will pinpoint the molecular escape mechanisms resistant tumors employ to evade the action the chemotherapeutic agent. In the second phase of the project, we wil l develop a novel computational that predicts which other drug is most likely to reprogram the tumor into a carboplatin-sensitive state. this end, we will map the metabolic profiles of resistance onto an integrated metabolic, signaling and pathway map to then identify drugs whose targets are upstream of the desired effect. In the last part the project, we will choose the highest-scoring predictions and validate them experimentally on the Specifically, we expect to render resistant organoids responsive by pretreating them with the drugs. If successful, this project will establish a new paradigm for the rational design of combination in refractory tumors. f f
项目 总结/摘要 这 耐 疾病 率 女人, 代谢组 电阻, 的 算法 到 监管 的 类器官 识别 疗法 该项目旨在开发一种新型的跨学科框架,用于药物的设计性重新编程- 肿瘤进入反应状态。该试点将重点关注高级别浆液性卵巢癌, 高达20%的患者对卡铂的初级治疗难治,80%的患者复发 最初有反应的病人。我们将从12例难治性和12例反应性患者中获得原发性肿瘤组织 培养患者来源的类器官作为患者肿瘤的个性化体外模型, 对组织样本和类器官进行分析。这将使我们能够识别代谢状态的 这将精确定位耐药肿瘤逃避作用的分子逃逸机制, 化疗剂。在项目的第二阶段,我们将开发一种新的计算 预测哪种药物最有可能将肿瘤重新编程到卡铂敏感状态。 为此,我们将把耐药的代谢谱映射到一个整合的代谢、信号和 然后识别其靶点位于所需效果上游的药物。最后一部分 在该项目中,我们将选择得分最高的预测,并在实验上验证它们。 具体地说,我们希望通过用以下物质预处理它们来使抗性类器官产生反应: 毒品如果成功的话,这个项目将为组合的合理设计建立一个新的范例 在难治性肿瘤中。 F F

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jan Krumsiek其他文献

Jan Krumsiek的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jan Krumsiek', 18)}}的其他基金

Rational design of drug combinations to target chemotherapy resistance in high-grade serous ovarian cancer via metabolomic profiling of patient-derived organoids
通过患者来源类器官的代谢组学分析,合理设计药物组合,以针对高级别浆液性卵巢癌的化疗耐药性
  • 批准号:
    10201800
  • 财政年份:
    2021
  • 资助金额:
    $ 8.48万
  • 项目类别:

相似海外基金

DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 8.48万
  • 项目类别:
    Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 8.48万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 8.48万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 8.48万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 8.48万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 8.48万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 8.48万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 8.48万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 8.48万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 8.48万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了