Characterization of Chronic Pain and its Biopsychosocial Mechanisms in Lupus using Electronic Health Records

使用电子健康记录描述狼疮慢性疼痛及其生物心理社会机制

基本信息

  • 批准号:
    10406326
  • 负责人:
  • 金额:
    $ 12.63万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-05-19 至 2026-04-30
  • 项目状态:
    未结题

项目摘要

Up to 100 million Americans live with ongoing pain, costing $635 billion annually. In the United States, there are more than 200,000 people living with SLE, a chronic inflammatory rheumatic disease with multi-organ involvement that disproportionately affects females and racial minorities. Living with a chronic disease such as SLE confers multiple challenges. Pain is a frequent self-reported symptom in SLE and is often one of the first symptoms of the disease. Despite treatment advances, pain remains the most prominent, unaddressed patient complaint. The management of pain in SLE has recently become more challenging because of the alarming epidemic of addiction and mortality attributed to opioid misuse. An estimated 31-46% of patients with SLE use prescription opioids. In one study, 70% of individuals using opioids used them for ≥1 year, and 22% were taking ≥2 opioid medications at the same time. Patients with SLE are nearly twice as likely as the general population to have opioid-related overdose hospitalizations. However, efforts to mitigate opioid misuse cannot be achieved without a detailed understanding and sustained investment in clinical research on the underlying mechanisms that produce and maintain chronic pain. Characterizing the burden of chronic pain in SLE is challenging on at least two counts. First, we lack data on the prevalence and burden of chronic pain in SLE, partly due to the absence of reliable approaches to identify patients with clinically significant pain in electronic health records (EHR). Second, there is a critical need to understand the biopsychosocial mechanisms and correlates that drive the pain experience in SLE. In this mentored career development award (K01), Dr. Titilola Falasinnu will use computational methods to increase the understanding of the clinical management chronic pain in SLE using EHR. In Aim 1, Dr. Falasinnu will develop a computational chronic pain phenotyping algorithm using diagnostic codes, pain scores, narrative clinic notes and medications extracted from the EHRs of two large healthcare systems (n~2,400). She will then use the algorithm to estimate chronic pain prevalence in a population-based registry (n~76,000). In Aim 2, Dr. Falasinnu will comprehensively phenotype biopsychosocial correlates of chronic pain using an existing registry of ~500 patients with SLE attending a multi-disciplinary pain center. Throughout the award, Dr. Falasinnu will build on her doctoral training as an epidemiologist and biostatistician to develop new skills in biomedical informatics to conduct impactful pain medicine research. These skills will include working with EHR and registry data, machine learning and natural language processing, pain science, grant-writing, and scientific communication. Through coursework, clinical observation in pain medicine clinics, mentorship, and external conferences and workshops, Dr. Falasinnu will gain the skills needed to apply for her first R01 and pursue a career as a tenure-track principal investigator.
多达1亿美国人患有持续性疼痛,每年花费6350亿美元。在美国,有

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Titilola Falasinnu其他文献

Titilola Falasinnu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Titilola Falasinnu', 18)}}的其他基金

Characterization of Chronic Pain and its Biopsychosocial Mechanisms in Lupus using Electronic Health Records
使用电子健康记录描述狼疮慢性疼痛及其生物心理社会机制
  • 批准号:
    10617816
  • 财政年份:
    2021
  • 资助金额:
    $ 12.63万
  • 项目类别:
Characterization of Chronic Pain and its Biopsychosocial Mechanisms in Lupus using Electronic Health Records
使用电子健康记录描述狼疮慢性疼痛及其生物心理社会机制
  • 批准号:
    10192176
  • 财政年份:
    2021
  • 资助金额:
    $ 12.63万
  • 项目类别:

相似海外基金

DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 12.63万
  • 项目类别:
    Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 12.63万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 12.63万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 12.63万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 12.63万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 12.63万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 12.63万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 12.63万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 12.63万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 12.63万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了