Development of a Quantitative Angiography Technique for Characterizing Hepatic Perfusion Changes in Response to Embolization

开发定量血管造影技术来表征栓塞反应中的肝灌注变化

基本信息

  • 批准号:
    10406869
  • 负责人:
  • 金额:
    $ 4.22万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-07-01 至 2023-05-12
  • 项目状态:
    已结题

项目摘要

PROJECT SUMMARY Liver cancer is the 4th leading cause of cancer death worldwide. For intermediate-stage disease, intra-arterial therapies, such as transarterial chemoembolization (TACE), are the mainstay treatment. In TACE, targeted delivery of chemotherapeutic agents and embolic particles block tumor feeding arteries to increase both drug delivery and cause tumor necrosis. TACE can prolong survival, palliate symptoms, or serve as a bridge to liver transplantation. During TACE, angiographic monitoring of residual tumoral blood flow is critical and the degree of stasis achieved directly impacts patient outcomes, including survival. Currently, there are no objective, standardized intra-procedural methods for determining the optimal embolization endpoint. Instead, interventional radiologists rely on visual assessment of blood flow stasis and decreased perfusion to determine when to end an embolization. This subjective assessment is not reproducible and can lead to underembolization (insufficient tumor necrosis) or overembolization (damage to surrounding liver tissue), which can ultimately increase mortality. The objective of this proposal is to develop an intraprocedural quantitative digital subtraction angiography (qDSA) technique that can characterize hepatic perfusion changes in response to embolization. The proposed technique extracts blood flow information from DSA images that are routinely acquired during a TACE procedure. In our first aim, we will develop an optimized qDSA method that characterizes changes in hepatic arterial blood flow and perfusion in response to embolization. This will be done using in vitro phantom models and in vivo porcine models to identify optimal imaging parameters to characterize the nature of flow reduction in response to embolization. We will then perform embolizations in an in vivo porcine model to partial and complete stasis endpoints, and correlate the flow reduction using qDSA with the degree of perfusion changes using histopathology. In the second aim, we will use a rabbit liver tumor model to correlate flow reduction using qDSA with the degree of intratumoral perfusion changes and tissue response on histopathology. Successful demonstration of such a technique would serve as the first objective, standardized, and intra-procedural method for determining TACE endpoints. This would significantly improve the safety and efficacy of the procedure in the treatment of liver tumors.
项目摘要 肝癌是全球第四大癌症死亡原因。对于中期疾病,动脉内 诸如经动脉化疗栓塞(TACE)的治疗是主要的治疗。在TACE中,靶向 化疗剂和栓塞颗粒的输送会阻塞肿瘤供血动脉,以增加两种药物的浓度 并引起肿瘤坏死。TACE可以延长生存期,缓解症状,或作为肝脏的桥梁 移植在TACE过程中,血管造影监测残余肿瘤血流至关重要, 实现的停滞直接影响患者的结果,包括生存率。目前,没有目标, 确定最佳栓塞终点的标准化术中方法。相反地, 介入放射科医生依靠血流淤滞和灌注减少的视觉评估来确定 何时结束栓塞这种主观评估是不可复制的,可能导致 栓塞不足(肿瘤坏死不足)或栓塞过度(对周围肝组织的损伤), 最终会增加死亡率。 本提案的目的是开发一种术中定量数字减影血管造影术 (qDSA)技术,可以表征响应栓塞的肝脏灌注变化。拟议 技术从TACE期间常规采集的DSA图像中提取血流信息 procedure.在我们的第一个目标中,我们将开发一种优化的qDSA方法, 动脉血流和灌注对栓塞的反应。这将使用体外体模模型完成 以及体内猪模型,以确定最佳成像参数,从而表征血流减少的性质 对栓塞的反应。然后,我们将在体内猪模型中进行栓塞, 完整的停滞终点,并使用qDSA将血流减少与灌注变化程度相关联 使用组织病理学。在第二个目标中,我们将使用兔肝肿瘤模型来关联血流减少, qDSA结合瘤内灌注改变程度和组织病理学反应进行评价。成功 这种技术的演示将作为第一个目标,标准化,并在程序内 确定TACE终点的方法。这将显著提高药物的安全性和有效性。 肝肿瘤的治疗方法

项目成果

期刊论文数量(11)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Motion-compensation approach for quantitative digital subtraction angiography and its effect on in-vivo blood velocity measurement.
定量数字减影血管造影的运动补偿方法及其对体内血流速度测量的影响。
  • DOI:
    10.1117/1.jmi.11.1.013501
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Whitehead,JosephF;Periyasamy,Sarvesh;Laeseke,PaulF;Speidel,MichaelA;Wagner,MartinG
  • 通讯作者:
    Wagner,MartinG
A Multimodal Phantom for Visualization and Assessment of Histotripsy Treatments on Ultrasound and X-Ray Imaging.
用于超声和 X 射线成像组织解剖治疗可视化和评估的多模态模型。
  • DOI:
    10.1016/j.ultrasmedbio.2023.01.019
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Kutlu,AycaZ;Laeseke,PaulF;ZeighamiSalimabad,Mehdi;Minesinger,GraceM;Periyasamy,Sarvesh;Pieper,AlexanderA;Hall,TimothyJ;Wagner,MartinG
  • 通讯作者:
    Wagner,MartinG
Histotripsy Ablations in a Porcine Liver Model: Feasibility of Respiratory Motion Compensation by Alteration of the Ablation Zone Prescription Shape.
  • DOI:
    10.1007/s00270-020-02582-7
  • 发表时间:
    2020-11
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Longo KC;Zlevor AM;Laeseke PF;Swietlik JF;Knott EA;Rodgers AC;Mao L;Zhang X;Xu Z;Wagner MG;Periyasamy S;Lee FT Jr;Ziemlewicz TJ
  • 通讯作者:
    Ziemlewicz TJ
A technique for intra-procedural blood velocity quantitation using time-resolved 2D digital subtraction angiography.
  • DOI:
    10.1186/s42155-020-00199-y
  • 发表时间:
    2021-01-07
  • 期刊:
  • 影响因子:
    1.2
  • 作者:
    Hoffman C;Periyasamy S;Longhurst C;Medero R;Roldan-Alzate A;Speidel MA;Laeseke PF
  • 通讯作者:
    Laeseke PF
A Quantitative Digital Subtraction Angiography Technique for Characterizing Reduction in Hepatic Arterial Blood Flow During Transarterial Embolization.
定量数字减影血管造影技术,用于表征经动脉栓塞期间肝动脉血流量的减少。
  • DOI:
    10.1007/s00270-020-02640-0
  • 发表时间:
    2021-03
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Periyasamy S;Hoffman CA;Longhurst C;Schefelker GC;Ozkan OS;Speidel MA;Laeseke PF
  • 通讯作者:
    Laeseke PF
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sarvesh Periyasamy其他文献

Sarvesh Periyasamy的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 4.22万
  • 项目类别:
    Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 4.22万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 4.22万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 4.22万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 4.22万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 4.22万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 4.22万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 4.22万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 4.22万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 4.22万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了