Regulation of replication and recombination intermediates
复制和重组中间体的调控
基本信息
- 批准号:10406889
- 负责人:
- 金额:$ 35.92万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-08-01 至 2023-05-31
- 项目状态:已结题
- 来源:
- 关键词:AffectAnaphaseBindingBiochemicalBiological AssayCellsChIP-seqComplexCruciform DNADNADNA DamageDNA MaintenanceDNA StructureDNA biosynthesisDNA replication forkDNA-Directed DNA PolymeraseDataDiseaseEnsureEnzymesEventExcisionFaceFailureGenetic NondisjunctionGenetic RecombinationGenetic TranscriptionGenomeGenome StabilityGenomic InstabilityGoalsIn VitroInvestigationLeadLinkMaintenanceMalignant NeoplasmsMediatingMitosisModelingMolecular GeneticsMutationOutcomePathway interactionsPreventionProcessProtein BiosynthesisProteinsRNA chemical synthesisRegulationResearchResolutionRibosomal DNARibosomal RNARoleSaccharomycetalesSiteSpecificityStressStructureSumoylation PathwaySyndromeSystemTestingTopoisomeraseTravelWorkYeastsbasecofactorcopingdiagnostic strategygenetic regulatory proteinhomologous recombinationhuman diseasein vivoinsightnon-histone proteinnovel diagnosticsphysical propertypreventrecombinational repairrecruitrepairedtreatment strategy
项目摘要
Faithful duplication of the genome requires regulation of replication forks that stall at numerous template
blockages. Failure to assist stalled replication forks can lead to incomplete replication and many types of genetic
alterations underlying DNA fragility syndromes and tumorigensis. Non-histone proteins tightly bound to DNA
(protein barriers) are a major cause of fork blockade, and a large portion of these are located inside the repetitive
ribosomal DNA (rDNA). rDNA organizes nucleoli and constitutes 10-30% of the genome across species. As such,
rDNA replication influences overall genomic stability as well as RNA and protein synthesis. rDNA protein barriers
have unique features such as greater topological stress due to high levels of rRNA transcription and requirement
of extended maintenance of the replisome. Mechanisms that can ensure rDNA replication completion given these
challenges are unclear. Excitingly, our recent data in yeast suggest that the conserved eight-subunit Smc5/6
complex provides an integrated solution for coping with unique challenges at rDNA. We found that Smc5/6 is
essential for completing replication at rDNA but not at non-rDNA regions. We further determined that Smc5/6
limits replication fork reversal at rDNA protein barriers. Our new data let us propose that Smc5/6 uses the
combined activities of its subunits to regulate stalled forks at rDNA protein barriers and ensure proper rDNA
replication termination. We plan to test this central hypothesis using a combination of molecular, genetic, and
biochemical approaches in Aim 1.
When stalled replication forks fail to recover, collapsed forks and unreplicated DNA gaps can be repaired
by homologous recombination, generating recombination intermediates such as Holliday junctions. Promptly
resolving these structures is critical for preventing DNA entanglement during mitosis, which can lead to anaphase
bridges, micronuclei formation, and genomic instability. Studies from us and others have uncovered multiple
regulatory factors that are critical for Holliday junction removal. However, their functional mechanisms remain to
be elucidated. Our current research on one of the conserved regulatory factors, the Esc2 protein, which is critical
for genomic stability, leads to new models for its functional mechanisms. In particular, we suggest that Esc2 uses
a bimodal strategy for enhancing HJ dissolution, including both a structural contribution and a SUMO-mediated
mechanism. In Aim 2, we plan to test this model and define how HJ clearance is enabled by Esc2. To accomplish
the goals in this proposal, we will use high-resolution assays in the highly effective yeast system. Outcomes of
this proposed work will expand our view of several processes, including how rDNA replication completion is
achieved, how replication fork is regulated in a context-specific manner, and how recombination intermediate
removal can be assisted by regulatory proteins. As these processes are intimately linked to DNA damage
syndromes and cancers, our studies will inform mechanisms underlying these diseases, and help to develop
new diagnostic and treatment strategies.
基因组的忠实复制需要复制叉的调节,
堵塞。未能协助停滞的复制叉可导致不完整的复制和许多类型的遗传缺陷。
DNA脆性综合征和肿瘤发生的潜在改变。与DNA紧密结合的非组蛋白
(蛋白质屏障)是叉阻断的主要原因,其中很大一部分位于重复的
核糖体DNA(rDNA)。rDNA组织核仁并构成跨物种基因组的10-30%。因此,在本发明中,
rDNA复制影响整体基因组稳定性以及RNA和蛋白质合成。rDNA蛋白屏障
具有独特的特征,例如由于高水平的rRNA转录和需要更大的拓扑应力,
复制体的长期维持。可以确保rDNA复制完成的机制,
挑战尚不明确。令人兴奋的是,我们最近在酵母中的数据表明,保守的八亚基Smc 5/6
复合体为应对rDNA的独特挑战提供了综合解决方案。我们发现Smc 5/6是
这对于完成rDNA的复制而不是非rDNA区域的复制是必需的。我们进一步确定Smc 5/6
限制rDNA蛋白质屏障处的复制叉逆转。我们的新数据让我们提出Smc 5/6使用
其亚基的组合活性调节rDNA蛋白质屏障处的停滞叉,并确保适当的rDNA
复制终止。我们计划使用分子、遗传和基因的组合来检验这一中心假设。
目标1中的生物化学方法。
当停滞的复制叉无法恢复时,可以修复塌陷的复制叉和未复制的DNA缺口
通过同源重组,产生重组中间体,如霍利迪连接。及时
解决这些结构对于防止有丝分裂过程中DNA缠结至关重要,这可能导致分裂后期
桥、微核形成和基因组不稳定性。我们和其他人的研究揭示了多种
调节因素是关键的霍利迪交界处删除。然而,其功能机制仍然是
被阐明。我们目前对保守的调节因子之一Esc 2蛋白的研究,
基因组稳定性,导致其功能机制的新模型。特别是,我们建议Esc 2使用
增强HJ溶解的双峰策略,包括结构贡献和SUMO介导的
机制在目标2中,我们计划测试此模型并定义Esc 2如何启用HJ清除。完成
在这个建议的目标,我们将使用高分辨率的检测在高效酵母系统。成果
这项工作将扩大我们对几个过程的认识,包括rDNA复制完成是如何在细胞内完成的。
实现,复制叉如何以特定于上下文的方式进行调节,以及重组中间体
可通过调节蛋白来辅助去除。由于这些过程与DNA损伤密切相关,
综合征和癌症,我们的研究将告知这些疾病的潜在机制,并有助于发展
新的诊断和治疗策略。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xiaolan Zhao其他文献
Xiaolan Zhao的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xiaolan Zhao', 18)}}的其他基金
Regulation of genome replication, recombination, and stress response
基因组复制、重组和应激反应的调节
- 批准号:
10406632 - 财政年份:2022
- 资助金额:
$ 35.92万 - 项目类别:
Regulation of genome replication, recombination, and stress response
基因组复制、重组和应激反应的调节
- 批准号:
10707021 - 财政年份:2022
- 资助金额:
$ 35.92万 - 项目类别:
Regulation of genome replication, recombination, and stress response
基因组复制、重组和应激反应的调节
- 批准号:
10809252 - 财政年份:2022
- 资助金额:
$ 35.92万 - 项目类别:
Regulation of replication and recombination intermediates
复制和重组中间体的调控
- 批准号:
10153821 - 财政年份:2019
- 资助金额:
$ 35.92万 - 项目类别:
Regulation of Replication and Recombination Intermediates
复制和重组中间体的调控
- 批准号:
10414197 - 财政年份:2019
- 资助金额:
$ 35.92万 - 项目类别:
Regulation of replication and recombination intermediates
复制和重组中间体的调控
- 批准号:
10689591 - 财政年份:2019
- 资助金额:
$ 35.92万 - 项目类别:
Studies of the Smc5/Smc6 complex in chromosomal replication
Smc5/Smc6 复合体在染色体复制中的研究
- 批准号:
8009924 - 财政年份:2010
- 资助金额:
$ 35.92万 - 项目类别:
Studies of the Smc5/Smc6 complex in chromosomal replication
Smc5/Smc6 复合物在染色体复制中的研究
- 批准号:
9196359 - 财政年份:2007
- 资助金额:
$ 35.92万 - 项目类别:
Studies of the Smc5/Smc6 complex in chromosomal replication
Smc5/Smc6 复合体在染色体复制中的研究
- 批准号:
7498480 - 财政年份:2007
- 资助金额:
$ 35.92万 - 项目类别:
Studies of the Smc5/Smc6 complex in chromosomal replication
Smc5/Smc6 复合体在染色体复制中的研究
- 批准号:
7673498 - 财政年份:2007
- 资助金额:
$ 35.92万 - 项目类别:
相似国自然基金
RIF1蛋白在处理超细后期桥(ultrafine anaphase bridge)和保障基因组稳定的作用
- 批准号:
- 批准年份:2019
- 资助金额:10.0 万元
- 项目类别:省市级项目
相似海外基金
The Anaphase Promoting Complex/Cyclosome and double-stranded DNA damage in S. cerevisiae
酿酒酵母中的后期促进复合物/环体和双链 DNA 损伤
- 批准号:
574890-2022 - 财政年份:2022
- 资助金额:
$ 35.92万 - 项目类别:
University Undergraduate Student Research Awards
Identification of protein phosphatases required for anaphase onset.
鉴定后期开始所需的蛋白磷酸酶。
- 批准号:
575128-2022 - 财政年份:2022
- 资助金额:
$ 35.92万 - 项目类别:
University Undergraduate Student Research Awards
The role of microtubule dynamics in midzone driven chromosome segregation in anaphase
微管动力学在中区驱动的后期染色体分离中的作用
- 批准号:
10797668 - 财政年份:2022
- 资助金额:
$ 35.92万 - 项目类别:
Characterization of molecular mechanisms governing budding yeast lifespan using small peptides that interact with the Anaphase Promoting Complex
使用与后期促进复合物相互作用的小肽来表征控制芽殖酵母寿命的分子机制
- 批准号:
RGPIN-2017-05478 - 财政年份:2022
- 资助金额:
$ 35.92万 - 项目类别:
Discovery Grants Program - Individual
The role of microtubule dynamics in midzone driven chromosome segregation in anaphase
微管动力学在中区驱动的后期染色体分离中的作用
- 批准号:
10345098 - 财政年份:2022
- 资助金额:
$ 35.92万 - 项目类别:
The role of microtubule dynamics in midzone driven chromosome segregation in anaphase
微管动力学在中区驱动的后期染色体分离中的作用
- 批准号:
10561625 - 财政年份:2022
- 资助金额:
$ 35.92万 - 项目类别:
Characterization of molecular mechanisms governing budding yeast lifespan using small peptides that interact with the Anaphase Promoting Complex
使用与后期促进复合物相互作用的小肽来表征控制芽殖酵母寿命的分子机制
- 批准号:
RGPIN-2017-05478 - 财政年份:2021
- 资助金额:
$ 35.92万 - 项目类别:
Discovery Grants Program - Individual
Characterization of mitochondrial organization, epigenomic regulation, and the Anaphase Promoting Complex in Progeria-driven premature senescence
早衰症驱动的过早衰老中线粒体组织、表观基因组调控和后期促进复合物的表征
- 批准号:
466918 - 财政年份:2021
- 资助金额:
$ 35.92万 - 项目类别:
Studentship Programs
The Role of the Anaphase Promoting Complex in Breast Cancer Progression
后期促进复合物在乳腺癌进展中的作用
- 批准号:
555539-2020 - 财政年份:2020
- 资助金额:
$ 35.92万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Unravelling the role of topoisomerase II beta binding protein 1 (TOPBP1) in the resolution of ultra-fine anaphase bridges.
揭示拓扑异构酶 II β 结合蛋白 1 (TOPBP1) 在解析超细后期桥中的作用。
- 批准号:
BB/T009608/1 - 财政年份:2020
- 资助金额:
$ 35.92万 - 项目类别:
Fellowship