Regenerating Vascularized and Innervated Skeletal Muscle to Treat VML Defects
再生血管化和神经支配的骨骼肌来治疗 VML 缺陷
基本信息
- 批准号:10229561
- 负责人:
- 金额:$ 42.85万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-08-05 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAcetylcholineAction PotentialsAgrinBiocompatible MaterialsBiophysicsBlood VesselsCell SurvivalCell TherapyCellsCellular MorphologyCholinergic ReceptorsClinicalDataDefectDevelopmentEconomic BurdenElectrospinningEngineeringFibrinFibrosisGene ExpressionGenesGeneticGrowthHarvestHeparan Sulfate ProteoglycanHeterogeneityHumanImmunodeficient MouseImplantIn VitroIndividualInfiltrationInjuryInsulin-Like Growth Factor IInterceptKineticsModulusMorphologyMotor NeuronsMusMuscleMuscle CellsMuscle ContractionMuscle FibersMuscle satellite cellMuscular AtrophyMyoblastsNatural regenerationNerveNeuromuscular JunctionPAX7 genePhenotypePlayPopulationPreparationPreventionProliferatingPropertyRecovery of FunctionRegenerative capacityReporterRoleSiteSkeletal MuscleSurgical incisionsTestingTissue EngineeringTransplantationTraumatic injuryTreatment Protocolscell growtheffective therapyfunctional restorationhuman pluripotent stem cellin vivolean body massmonolayermouse modelmuscle engineeringmuscle graftsmuscle physiologymuscle regenerationmyogenesisnerve supplyneuromuscularneurotransmissionnovelorganizational structurepost-transplantpostsynapticprogenitorregeneration potentialrelating to nervous systemrepairedscaffoldscale upsingle-cell RNA sequencingstemstem cell biologystem cellstibialis anterior musclevolumetric muscle loss
项目摘要
Skeletal muscle makes up almost half of the human lean body mass and approximately 40% of all traumatic
injuries involve skeletal muscle damage. This results in a global economic burden of roughly $6 billion. While
skeletal muscle possesses an intrinsic self-regeneration capacity, in clinical scenarios of volumetric muscle
loss (VML) where the muscle's natural repair mechanisms are overwhelmed, regeneration fails. Tissue
engineering strategies using human skeletal muscle stem or progenitor cells combined with novel biomaterials
have unprecedented potential to provide effective therapies. In this study, we propose to harness the myogenic
potential and regenerative capacity of sorted skeletal muscle stem/progenitor reporter cells (PAX7::GFP+)
derived from human pluripotent stem cells (hPSCs). Specifically, we hypothesize that PAX7::GFP+ myogenic
progenitors grown on electrospun fibrin microfiber bundles will proliferate, upregulate their expression of
myogenic genes and form aligned, multi-nucleated myotubes assembled into 3D muscle grafts. These
engineered grafts will be used to regenerate skeletal muscle tissue and restore normal function following VML.
We further hypothesize that the use of agrin in combination with insulin-like growth factor-1 (IGF-1) will
promote the formation of more densely packed PAX7::GFP+ derived myotubes in the engineered muscle
grafts and enable the formation of mature neuromuscular junctions (NMJs) in the regenerating skeletal muscle.
We will test these hypotheses in three Specific Aims. In Sp. Aim 1, we will engineer uniform, densely seeded
skeletal muscle grafts by (i) electrospinning PAX7::GFP+ cell aggregates into the fibrin microfiber bundles and
(ii) coating the microfiber bundles with PAX7::GFP+ cell-seeded bulk fibrin. We will stimulate their maturation
into contractile 3D skeletal muscle tissues using biophysical stimulation. We will quantitatively evaluate cell
morphology, proliferation, multi-nucleation, and myogenic differentiation and utilize single-cell RNA-sequencing
to compare the cellular heterogeneity and myogenic gene expression profiles with that of native muscle cells.
In Sp. Aim 2, we will evaluate the potential of soluble and tethered agrin/IGF-1 individually and in combination
to enhance the proliferation and myogenesis of PAX7::GFP+ cells. We will also characterize the effects of
tethering these molecules on the physicochemical and pro-myogenic properties of the modified scaffolds. In
Sp. Aim 3, we will implant PAX7::GFP+ derived muscle grafts engineered with and without soluble or tethered
agrin/IGF-1 into small incisions into the tibialis anterior (TA) muscle of immunodeficient mice to assess cell
survival, integration, and regenerative potential. We will use these data to optimize the engineered skeletal
muscle grafts that we will implant into VML defects to quantitatively assess muscle regeneration, vascular and
neural infiltration, the formation of mature neuromuscular junctions, and functional recovery at 1 and 3 months
post-transplantation. To successfully accomplish these aims, we combine complementary expertise in tissue
engineering, stem cell biology, biomaterials, murine models of VML, and skeletal muscle physiology.
骨骼肌几乎占人类瘦体重的一半,约40%的所有创伤性
损伤包括骨骼肌损伤。这造成了大约60亿美元的全球经济负担。而
骨骼肌具有内在的自我再生能力,在临床情况下,体积肌肉
肌肉的自然修复机制不堪重负,再生失败。组织
使用人骨骼肌干细胞或祖细胞结合新型生物材料的工程策略
具有提供有效治疗的前所未有的潜力。在这项研究中,我们建议利用肌源性
分选的骨骼肌干/祖细胞报告细胞(PAX 7::GFP+)的潜力和再生能力
来源于人多能干细胞(hPSC)。具体来说,我们假设PAX 7::GFP+肌源性
在电纺纤维蛋白微纤维束上生长的祖细胞会增殖,上调其表达
成肌基因,并形成对齐的多核肌管,组装成3D肌肉移植物。这些
工程移植物将用于再生骨骼肌组织并恢复VML后的正常功能。
我们进一步假设,聚集蛋白与胰岛素样生长因子-1(IGF-1)联合使用,
促进在工程化肌肉中形成更密集的PAX 7::GFP+衍生的肌管
移植物,并使成熟的神经肌肉接头(NMJ)的再生骨骼肌的形成。
我们将在三个具体目标中检验这些假设。在特殊目标1中,我们将设计均匀,密集的种子
(i)将PAX 7::GFP+细胞聚集体电纺成纤维蛋白微纤维束,
(ii)用PAX 7::GFP+细胞接种的大量纤维蛋白包被微纤维束。我们会刺激他们的成熟
植入可收缩的3D骨骼肌组织。我们将定量评估细胞
形态、增殖、多核化和肌源性分化,并利用单细胞RNA测序
与天然肌细胞的细胞异质性和肌源性基因表达谱进行比较。
在Sp. Aim 2中,我们将评估可溶性和拴系的聚集蛋白/IGF-1单独和组合的潜力。
以增强PAX 7::GFP+细胞的增殖和肌生成。我们还将描述
将这些分子束缚在改性支架的物理化学和促肌生成性质上。在
Sp.目的3,我们将植入PAX 7::GFP+衍生的肌肉移植物,其工程化有和没有可溶性或栓系的
将聚集蛋白/IGF-1植入免疫缺陷小鼠的胫骨前肌(TA)的小切口中,以评估细胞增殖。
生存、整合和再生潜力。我们将使用这些数据来优化工程骨骼
我们将植入VML缺损的肌肉移植物,以定量评估肌肉再生、血管和
1个月和3个月时神经浸润、成熟神经肌肉接头形成和功能恢复
移植后。为了成功实现这些目标,我们将联合收割机在组织切割方面的互补专业知识
工程、干细胞生物学、生物材料、VML的鼠模型和骨骼肌生理学。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Warren L Grayson其他文献
Warren L Grayson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Warren L Grayson', 18)}}的其他基金
Regenerating Vascularized and Innervated Skeletal Muscle to Treat VML Defects
再生血管化和神经支配的骨骼肌来治疗 VML 缺陷
- 批准号:
10748834 - 财政年份:2023
- 资助金额:
$ 42.85万 - 项目类别:
Engineered osteogenic growth factors for targeted stimulation of bone regeneration
用于定向刺激骨再生的工程成骨生长因子
- 批准号:
10459814 - 财政年份:2022
- 资助金额:
$ 42.85万 - 项目类别:
Engineered osteogenic growth factors for targeted stimulation of bone regeneration
用于定向刺激骨再生的工程成骨生长因子
- 批准号:
10610434 - 财政年份:2022
- 资助金额:
$ 42.85万 - 项目类别:
Regenerating Vascularized and Innervated Skeletal Muscle to Treat VML Defects
再生血管化和神经支配的骨骼肌来治疗 VML 缺陷
- 批准号:
10433958 - 财政年份:2020
- 资助金额:
$ 42.85万 - 项目类别:
Regenerating Vascularized and Innervated Skeletal Muscle to Treat VML Defects
再生血管化和神经支配的骨骼肌来治疗 VML 缺陷
- 批准号:
10862957 - 财政年份:2020
- 资助金额:
$ 42.85万 - 项目类别:
Regenerating Vascularized and Innervated Skeletal Muscle to Treat VML Defects
再生血管化和神经支配的骨骼肌来治疗 VML 缺陷
- 批准号:
10653183 - 财政年份:2020
- 资助金额:
$ 42.85万 - 项目类别:
Regenerating Vascularized and Innervated Skeletal Muscle to Treat VML Defects
再生血管化和神经支配的骨骼肌来治疗 VML 缺陷
- 批准号:
10028936 - 财政年份:2020
- 资助金额:
$ 42.85万 - 项目类别:
Oxygen-eluting scaffolds for cranial bone regeneration
用于颅骨再生的氧气洗脱支架
- 批准号:
10370302 - 财政年份:2019
- 资助金额:
$ 42.85万 - 项目类别:
Oxygen-eluting scaffolds for cranial bone regeneration
用于颅骨再生的氧气洗脱支架
- 批准号:
9888389 - 财政年份:2019
- 资助金额:
$ 42.85万 - 项目类别:
Oxygen-eluting scaffolds for cranial bone regeneration
用于颅骨再生的氧气洗脱支架
- 批准号:
10586040 - 财政年份:2019
- 资助金额:
$ 42.85万 - 项目类别:
相似海外基金
Spatiotemporal dynamics of acetylcholine activity in adaptive behaviors and response patterns
适应性行为和反应模式中乙酰胆碱活性的时空动态
- 批准号:
24K10485 - 财政年份:2024
- 资助金额:
$ 42.85万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Structural studies into human muscle nicotinic acetylcholine receptors
人体肌肉烟碱乙酰胆碱受体的结构研究
- 批准号:
MR/Y012623/1 - 财政年份:2024
- 资助金额:
$ 42.85万 - 项目类别:
Research Grant
CRCNS: Acetylcholine and state-dependent neural network reorganization
CRCNS:乙酰胆碱和状态依赖的神经网络重组
- 批准号:
10830050 - 财政年份:2023
- 资助金额:
$ 42.85万 - 项目类别:
Study on biological significance of acetylcholine and the content in food resources
乙酰胆碱的生物学意义及其在食物资源中的含量研究
- 批准号:
23K05090 - 财政年份:2023
- 资助金额:
$ 42.85万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
alpha7 nicotinic acetylcholine receptor allosteric modulation and native structure
α7烟碱乙酰胆碱受体变构调节和天然结构
- 批准号:
10678472 - 财政年份:2023
- 资助金额:
$ 42.85万 - 项目类别:
Diurnal Variation in Acetylcholine Modulation of Dopamine Dynamics Following Chronic Cocaine Intake
慢性可卡因摄入后乙酰胆碱对多巴胺动力学调节的昼夜变化
- 批准号:
10679573 - 财政年份:2023
- 资助金额:
$ 42.85万 - 项目类别:
Striatal Regulation of Cortical Acetylcholine Release
纹状体对皮质乙酰胆碱释放的调节
- 批准号:
10549320 - 财政年份:2022
- 资助金额:
$ 42.85万 - 项目类别:
Differential Nicotinic Acetylcholine Receptor Modulation of Striatal Dopamine Release as a Mechanism Underlying Individual Differences in Drug Acquisition Rates
纹状体多巴胺释放的烟碱乙酰胆碱受体差异调节是药物获取率个体差异的机制
- 批准号:
10553611 - 财政年份:2022
- 资助金额:
$ 42.85万 - 项目类别:
Mechanisms of nicotinic acetylcholine receptor modulation of cocaine reward
烟碱乙酰胆碱受体调节可卡因奖赏的机制
- 批准号:
10672207 - 财政年份:2022
- 资助金额:
$ 42.85万 - 项目类别:
Structural basis of nicotinic acetylcholine receptor gating and toxin inhibition
烟碱乙酰胆碱受体门控和毒素抑制的结构基础
- 批准号:
10848770 - 财政年份:2022
- 资助金额:
$ 42.85万 - 项目类别: