A universal multi-drug encapsulation and delivery system employing supramolecular nanogels that self-assemble via dynamic sulfone bonding
一种通用的多药物封装和递送系统,采用通过动态砜键自组装的超分子纳米凝胶
基本信息
- 批准号:10298698
- 负责人:
- 金额:$ 45.14万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-01 至 2025-04-30
- 项目状态:未结题
- 来源:
- 关键词:AddressAdjuvantAntigensAreaBacteriaBiochemicalBiocompatible MaterialsBiodistributionBiologicalBiological AssayBiomimeticsChemicalsChemistryCircular DichroismComplexContrast MediaDNAData ReportingDevelopmentDrug Delivery SystemsDrug FormulationsEmploymentEnvironmentEquilibriumExperimental ModelsFlow CytometryGelGrainHistologyHydration statusHydrogelsHydrophobicityImmunotherapyIn VitroIndividualInductively Coupled Plasma Mass SpectrometryInflammationLeucine ZippersMapsMethodologyMethodsMicroscopyModelingMolecularMorphologyMusNanoGelNanostructuresNatureNucleic AcidsOrganPeptide HydrolasesPharmaceutical PreparationsPopulation HeterogeneityProcessPropertyProteinsProteomicsRNARecording of previous eventsReportingReproducibilitySeriesSolventsSpatial DistributionSpecific qualifier valueStructureSulfonesSystemTestingTherapeuticToxic effectTracerVaccinesVertebral columnVesicleWateramphiphilicityaqueousbiomaterial compatibilitychemotherapyclinical translationcopolymercrystallinityexperienceexperimental studyfluorophorehydrophilicityimmunogenicityin vivoinnovationinsightmolecular dynamicsnanobiomaterialnanofabricationnanoscalenovelpropyleneprotein complexresearch clinical testingscale upself assemblysimulationsmall moleculetoolvaccine development
项目摘要
PROJECT SUMMARY
Significance: Nanostructure formation by supramolecular self-assembly primarily involves the
hydrophobic/hydrophilic equilibrium of amphiphiles within aqueous environments. The biocompatibility and
chemical versatility permitted by block copolymer amphiphiles have allowed the fabrication of a wide range of
nanoscale biomaterials (NBMs). Despite these advances, considerable challenges remain. Self-assembled
NBMs experience substantial difficulties with the encapsulation of molecules, with many (often difficult to express
or expensive) proteins and hydrophilic small molecules achieving low encapsulation efficiencies well below 20%.
Furthermore, the multicomponent structure of these amphiphiles often requires employment of complex block
copolymer chemistries, which can present difficulties when scaling up synthesis and purification for practical
clinical testing and translation.
Innovation: A novel means of supramolecular self-assembly that employs a single, simple, water-soluble
homopolymer that achieves >90% encapsulation efficiency universally for multiple hydrophilic (and hydrophobic)
small molecules and biologics simultaneously will be modeled, optimized and validated. The unique network
self-assembly of poly(propylene sulfone) (PPSU) homopolymers, which are simultaneously both soluble and
crystallizable in water, has not been previously reported. By adjusting solvent polarity, intra- and interchain
segments of noncovalent sulfone-sulfone bonds form along the PPSU backbone, biomimetic of DNA
hybridization and leucine zippers in proteins. Preliminary experiments and simulations of this process revealed
dynamic sulfone-sulfone interactions to form an interconnected physical gel network that can solidify into either
macroscale hydrogels or collapse into nanogels of diverse morphologies. Using this rapid and scalable
methodology, uniform populations of diverse nanogel morphologies can be specified, including spheres, vesicles
and filamentous bundles. Importantly, drugs (regardless of their physicochemical properties) are efficiently and
universally captured within PPSU nanogels during network collapse. This novel mechanism of molecular
encapsulation demonstrates an exceptionally high loading efficiency for all molecules tested and combinations
thereof, including proteins, DNA, RNA, fluorophores, contrast agents and small molecule drugs.
Two independent aims are proposed to optimize and validate PPSU NBMs as a novel controlled delivery platform
for biomedical applications. Aim 1: Employ molecular dynamics simulations and analytical nanoscale
microscopy to mechanistically understand PPSU self-assembly and therapeutic loading. Aim 2: Develop
universal molecular encapsulation by PPSU as a tool for the optimization of a model NBM vaccine formulation.
项目摘要
意义:通过超分子自组装形成纳米结构主要涉及
两亲物在水环境中的疏水/亲水平衡。生物相容性和
嵌段共聚物两亲物所允许的化学多功能性已经允许制造宽范围的
纳米生物材料(NBM)。尽管取得了这些进展,但仍然存在相当大的挑战。自组装
NBM在包封分子方面遇到了很大的困难,其中许多(通常难以表达)分子被包封。
或昂贵的)蛋白质和亲水性小分子,从而实现远低于20%的低包封效率。
此外,这些两亲物的多组分结构通常需要使用复杂的嵌段
共聚物化学物质,当扩大合成和纯化规模以供实际应用时可能会出现困难
临床测试和翻译。
创新:一种新的超分子自组装手段,采用单一的,简单的,水溶性的
均聚物实现>90%的包封效率,对于多种亲水性(和疏水性)
小分子和生物制剂将同时进行建模、优化和验证。所述唯一网络
聚(丙烯砜)(PPSU)均聚物的自组装,所述均聚物同时是可溶的和
可在水中结晶,以前没有报道过。通过调节溶剂极性,
非共价砜-砜键的片段沿着PPSU主链形成,DNA的仿生
杂交和亮氨酸拉链。初步的实验和模拟这一过程显示,
动态砜-砜相互作用,形成相互连接的物理凝胶网络,
宏观尺度的水凝胶或塌陷成不同形态的纳米凝胶。利用这种快速且可扩展的
方法,可以指定不同纳米凝胶形态的均匀群体,包括球体、囊泡
和丝状束。重要的是,药物(无论其物理化学性质如何)是有效的,
在网络崩溃期间普遍捕获在PPSU纳米凝胶内。这种新的分子机制
包封证明了对所有测试的分子和组合的异常高的装载效率
其包括蛋白质、DNA、RNA、荧光团、造影剂和小分子药物。
提出了两个独立的目标,以优化和验证PPSU NBM作为一种新的控制交付平台
用于生物医学应用。目标1:采用分子动力学模拟和分析纳米尺度
显微镜来机械地理解PPSU自组装和治疗负载。目标2:发展
PPSU的通用分子包封作为优化模型NBM疫苗制剂的工具。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Evan A. Scott其他文献
Efficacy of benznidazole delivery during Chagas disease nanotherapy is dependent on the nanocarrier morphology
在恰加斯病纳米治疗期间,苄硝唑递送的功效取决于纳米载体的形态
- DOI:
10.1016/j.biomaterials.2025.123358 - 发表时间:
2025-11-01 - 期刊:
- 影响因子:12.900
- 作者:
Debora B. Scariot;Austeja Staneviciute;Rayanne R.B. Machado;Simseok A. Yuk;Yu-Gang Liu;Swagat Sharma;Sultan Almunif;El Hadji Arona Mbaye;Celso Vataru Nakamura;David M. Engman;Evan A. Scott - 通讯作者:
Evan A. Scott
A compact catenane with tuneable mechanical chirality
一种具有可调节机械手性的紧密连接索烃
- DOI:
10.1038/s44160-025-00781-z - 发表时间:
2025-04-14 - 期刊:
- 影响因子:20.000
- 作者:
Chun Tang;Ruihua Zhang;Sultan Almunif;Partha Jyoti Das;Paige J. Brown;Ryan M. Young;Guangcheng Wu;Han Han;Xueze Zhao;Arthur H. G. David;Huang Wu;Bo Song;Alexandre Abhervé;Yong Wu;Yu-Meng Ye;Yuanning Feng;Aspen X.-Y. Chen;Charlotte L. Stern;Zhi Li;Evan A. Scott;Michael R. Wasielewski;J. Fraser Stoddart - 通讯作者:
J. Fraser Stoddart
Evan A. Scott的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Evan A. Scott', 18)}}的其他基金
A universal multi-drug encapsulation and delivery system employing supramolecular nanogels that self-assemble via dynamic sulfone bonding
一种通用的多药物封装和递送系统,采用通过动态砜键自组装的超分子纳米凝胶
- 批准号:
10626132 - 财政年份:2021
- 资助金额:
$ 45.14万 - 项目类别:
Identification of the immunomodulatory mechanisms of nanocarrier-enhanced costimulation blockade in an allogeneic portal vein islet transplantation model
异体门静脉胰岛移植模型中纳米载体增强共刺激阻断的免疫调节机制的鉴定
- 批准号:
10494100 - 财政年份:2021
- 资助金额:
$ 45.14万 - 项目类别:
Identification of the immunomodulatory mechanisms of nanocarrier-enhanced costimulation blockade in an allogeneic portal vein islet transplantation model
异体门静脉胰岛移植模型中纳米载体增强共刺激阻断的免疫调节机制的鉴定
- 批准号:
10303734 - 财政年份:2021
- 资助金额:
$ 45.14万 - 项目类别:
A universal multi-drug encapsulation and delivery system employing supramolecular nanogels that self-assemble via dynamic sulfone bonding
一种通用的多药物封装和递送系统,采用通过动态砜键自组装的超分子纳米凝胶
- 批准号:
10457457 - 财政年份:2021
- 资助金额:
$ 45.14万 - 项目类别:
Design and characterization of biomimetic nanobiomaterials to elicit CD1-restricted T cell responses during sub-unit vaccination
仿生纳米生物材料的设计和表征,以在亚单位疫苗接种过程中引发 CD1 限制性 T 细胞反应
- 批准号:
10444924 - 财政年份:2019
- 资助金额:
$ 45.14万 - 项目类别:
Design and characterization of biomimetic nanobiomaterials to elicit CD1-restricted T cell responses during sub-unit vaccination
仿生纳米生物材料的设计和表征,以在亚单位疫苗接种过程中引发 CD1 限制性 T 细胞反应
- 批准号:
10207410 - 财政年份:2019
- 资助金额:
$ 45.14万 - 项目类别:
相似海外基金
Identifying the Most Effective Adjuvant(s) for Leading Group A Streptococcal Vaccine Antigens in Preclinical Mouse and Nonhuman Primate Models
在临床前小鼠和非人灵长类动物模型中确定 A 组链球菌疫苗抗原最有效的佐剂
- 批准号:
10577066 - 财政年份:2023
- 资助金额:
$ 45.14万 - 项目类别:
Lymph node-targeted codelivery of albumin-binding peptide antigens and di-adjuvant for melanoma combination immunotherapy
用于黑色素瘤联合免疫治疗的白蛋白结合肽抗原和双佐剂的淋巴结靶向共递送
- 批准号:
10522591 - 财政年份:2022
- 资助金额:
$ 45.14万 - 项目类别:
Lymph Node-Targeted Codelivery of Albumin-Binding Peptide Antigens and Di-Adjuvant for Melanoma Combination Immunotherapy
用于黑色素瘤联合免疫治疗的白蛋白结合肽抗原和双佐剂的淋巴结靶向共递送
- 批准号:
10884052 - 财政年份:2022
- 资助金额:
$ 45.14万 - 项目类别:
Establishment of postoperative adjuvant immunotherapy using peptide pool of tumor antigens in advanced esophageal cancer
晚期食管癌肿瘤抗原肽库术后辅助免疫治疗的建立
- 批准号:
15K10100 - 财政年份:2015
- 资助金额:
$ 45.14万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of cancer vaccine using adjuvant function encrypted artificial antigens
使用佐剂功能加密人工抗原开发癌症疫苗
- 批准号:
26430172 - 财政年份:2014
- 资助金额:
$ 45.14万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Alpha-galactosycleramide as a mucosal adjuvant for HIV antigens
α-半乳糖酰胺作为 HIV 抗原的粘膜佐剂
- 批准号:
7849955 - 财政年份:2009
- 资助金额:
$ 45.14万 - 项目类别:
Alpha-galactosycleramide as a mucosal adjuvant for HIV antigens
α-半乳糖酰胺作为 HIV 抗原的粘膜佐剂
- 批准号:
7627172 - 财政年份:2009
- 资助金额:
$ 45.14万 - 项目类别:
RECOMBINANT MIF AS AN ADJUVANT FOR HIV ANTIGENS
重组 MIF 作为 HIV 抗原的佐剂
- 批准号:
2068228 - 财政年份:1992
- 资助金额:
$ 45.14万 - 项目类别:
RECOMBINANT MIF AS AN ADJUVANT FOR HIV ANTIGENS
重组 MIF 作为 HIV 抗原的佐剂
- 批准号:
3548034 - 财政年份:1992
- 资助金额:
$ 45.14万 - 项目类别:
RECOMBINANT MIF AS AN ADJUVANT FOR HIV ANTIGENS
重组 MIF 作为 HIV 抗原的佐剂
- 批准号:
3548033 - 财政年份:1992
- 资助金额:
$ 45.14万 - 项目类别: