Accuracy and Precision in CT Quantification of COPD Through Virtual Imaging Trials
通过虚拟成像试验对 COPD 进行 CT 定量的准确性和精确度
基本信息
- 批准号:10298963
- 负责人:
- 金额:$ 44.72万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-01 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:AlgorithmsAnatomyArtificial IntelligenceBiological MarkersCause of DeathChronic Obstructive Airway DiseaseCommunitiesComparative StudyComplementComplexComputed Tomography ScannersComputer ModelsCoupledDataData SetDensitometryDiagnosisDiagnosticDiagnostic ProcedureDiseaseDisease modelEffectivenessEnvironmental Risk FactorEvaluationExposure toGoalsImageInterstitial Lung DiseasesLibrariesLongitudinal StudiesLungLung diseasesMagnetic Resonance ImagingMeasurementMethodsModalityModelingMonitorPatient imagingPatientsPhotonsPhysiologyPositioning AttributePrevalenceProtocols documentationProviderPulmonary EmphysemaRadiation exposureRecording of previous eventsReportingReproducibilityResearchResolutionRoleSeveritiesSeverity of illnessSmokingSpirometryStructureSymptomsSystemTechnologyTimeTubeVariantX-Ray Computed Tomographybasecohortdisease diagnosishuman modelimage processingimaging biomarkerimprovedin silicoin vivoinsightintelligent algorithmquantitative imagingradiation absorbed dosereconstructiontoolvirtualvirtual imagingvirtual patientvoltage
项目摘要
Chronic Obstructive Pulmonary Disease (COPD) is a leading cause of death. Increasing in prevalence, COPD
is a major burden to patients and providers. Computed tomography (CT) can provide valuable information
about the structural and functional abnormalities of the disease as demonstrated in numerous studies where
quantitative CT is deployed to characterize and evaluate the treatment. For instance, the COPDGene study
has recently shown the substantial role of quantitative CT in the redefinition of COPD diagnosis, and in
evaluating the progression of emphysema over time. However, these biomarkers vary across different
scanners, settings, and patient attributes. There is a crucial need to manage this variability by optimizing and
harmonizing CT images for reliable biomarker quantifications across both current and emerging scanners.
This goal is not possible through conventional methods of using physical phantoms or patient images. Physical
phantoms are often oversimplified and not representative of the complex anatomy and physiology of COPD
patients. Patient images are ground-truth-limited, i.e., the exact anatomy and physiology of the patient is not
fully known. Further, patient-based comparisons require multiple acquisitions of the same subjects across
different scanners and settings. This is not ethically possible since repeated imaging increases the absorbed
radiation dose. These challenges can be overcome through the use of virtual imaging trials (VITs) where
studies are performed in silico using computational models of patients and scanners. VITs can provide reliable
and practical solution to the challenge of COPD imaging provided realistic models of patients and scanners.
Such models are currently lacking in the context of COPD.
We develop and then utilize realistic virtual imaging toolsets to systematically evaluate and optimize CT
biomarkers in COPD patients across scanners, imaging parameters, and patient attributes. We develop the
first library of realistic COPD patient models with diverse attributes and severities. Coupled with accurate
models of different scanners, the phantoms will be used to generate sets of ground-truth-known virtual CT
cases, to be disseminated to the research community and to be used to systematically evaluate the effects of
current and emerging scanners, various patient attributes, and the effects of image processing algorithms
(through a national challenge), on the accuracy and precision of COPD biomarkers. Further, we develop and
optimize a truth-based artificial intelligence-based algorithm for COPD quantifications. We optimize the
algorithm for accuracy and reproducibility, taking advantage of the ground-truth known simulated images
. We
then harmonize CT settings across different scanners to accurately and precisely assess COPD imaging
biomarkers for both single time-point and longitudinal studies.
The studies will be done for the top two image
processing algorithms, identified in the challenge, as well as our developed algorithm. Through these efforts,
the project will position CT as a more reliable method for improved characterization and monitoring of COPD.
慢性阻塞性肺疾病(COPD)是导致死亡的主要原因。慢性阻塞性肺病患病率上升
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ehsan Abadi其他文献
Ehsan Abadi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ehsan Abadi', 18)}}的其他基金
Accuracy and Precision in CT Quantification of COPD Through Virtual Imaging Trials
通过虚拟成像试验对 COPD 进行 CT 定量的准确性和精确度
- 批准号:
10640999 - 财政年份:2021
- 资助金额:
$ 44.72万 - 项目类别:
Accuracy and Precision in CT Quantification of COPD Through Virtual Imaging Trials
通过虚拟成像试验对 COPD 进行 CT 定量的准确性和精确度
- 批准号:
10435577 - 财政年份:2021
- 资助金额:
$ 44.72万 - 项目类别:
相似海外基金
Linking Epidermis and Mesophyll Signalling. Anatomy and Impact in Photosynthesis.
连接表皮和叶肉信号传导。
- 批准号:
EP/Z000882/1 - 财政年份:2024
- 资助金额:
$ 44.72万 - 项目类别:
Fellowship
Digging Deeper with AI: Canada-UK-US Partnership for Next-generation Plant Root Anatomy Segmentation
利用人工智能进行更深入的挖掘:加拿大、英国、美国合作开发下一代植物根部解剖分割
- 批准号:
BB/Y513908/1 - 财政年份:2024
- 资助金额:
$ 44.72万 - 项目类别:
Research Grant
Simultaneous development of direct-view and video laryngoscopes based on the anatomy and physiology of the newborn
根据新生儿解剖生理同步开发直视喉镜和视频喉镜
- 批准号:
23K11917 - 财政年份:2023
- 资助金额:
$ 44.72万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Genetics of Extreme Phenotypes of OSA and Associated Upper Airway Anatomy
OSA 极端表型的遗传学及相关上呼吸道解剖学
- 批准号:
10555809 - 财政年份:2023
- 资助金额:
$ 44.72万 - 项目类别:
computational models and analysis of the retinal anatomy and potentially physiology
视网膜解剖学和潜在生理学的计算模型和分析
- 批准号:
2825967 - 财政年份:2023
- 资助金额:
$ 44.72万 - 项目类别:
Studentship
Computational comparative anatomy: Translating between species in neuroscience
计算比较解剖学:神经科学中物种之间的翻译
- 批准号:
BB/X013227/1 - 财政年份:2023
- 资助金额:
$ 44.72万 - 项目类别:
Research Grant
Doctoral Dissertation Research: Social and ecological influences on brain anatomy
博士论文研究:社会和生态对大脑解剖学的影响
- 批准号:
2235348 - 财政年份:2023
- 资助金额:
$ 44.72万 - 项目类别:
Standard Grant
Development of a novel visualization, labeling, communication and tracking engine for human anatomy.
开发一种新颖的人体解剖学可视化、标签、通信和跟踪引擎。
- 批准号:
10761060 - 财政年份:2023
- 资助金额:
$ 44.72万 - 项目类别:
Understanding the functional anatomy of nociceptive spinal output neurons
了解伤害性脊髓输出神经元的功能解剖结构
- 批准号:
10751126 - 财政年份:2023
- 资助金额:
$ 44.72万 - 项目类别:
Anatomy and functions of LTP interactomes and their relationship to small RNA signals in systemic acquired resistance
LTP相互作用组的解剖和功能及其与系统获得性耐药中小RNA信号的关系
- 批准号:
BB/X013049/1 - 财政年份:2023
- 资助金额:
$ 44.72万 - 项目类别:
Research Grant