ATP-Dependent Protein Unfolding and Translocation by the Eukaryotic Proteasome
真核蛋白酶体的 ATP 依赖性蛋白质解折叠和易位
基本信息
- 批准号:10298469
- 负责人:
- 金额:$ 31.29万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-07-01 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:26S proteasomeATP HydrolysisAddressAffectBindingBiochemicalBiochemistryBiological AssayCell SurvivalCell divisionCellsCharacteristicsCodeComplementComplexCoupledCryoelectron MicroscopyDataDeubiquitinationDevelopmentDissectionElectron MicroscopyEngineeringEukaryotic CellFamilyFluorescenceFluorescence MicroscopyFluorescence Resonance Energy TransferFluorescent DyesGenetic TranscriptionGoalsGrantHumanIn VitroIndividualInterventionKineticsLabelLengthMalignant NeoplasmsMeasurementMechanicsMediatingMedicalModelingModificationMolecularMolecular ConformationMolecular MachinesMotorMutationNeurodegenerative DisordersPathway interactionsPeptide HydrolasesPharmaceutical PreparationsPharmacologic SubstancePlayPolyubiquitinPositioning AttributeProcessProtacProtein EngineeringProteinsQuality ControlRecombinantsRegulationResearchResolutionRoleSeriesSiteStructureSubstrate InteractionSystemUbiquitinWorkYeastsbasebiochemical toolsbiological adaptation to stressconformational conversionencryptionhuman diseaseinsightinterdisciplinary approachmulticatalytic endopeptidase complexparticleprotein degradationprotein foldingproteostasisreceptorreconstitutionsingle moleculesingle-molecule FRETsmall moleculesmall molecule inhibitortooltranslocaseunfoldaseunnatural amino acidsvalosin-containing protein
项目摘要
Project Summary
Protein degradation is tightly regulated by ATP-dependent compartmental proteases of the AAA+ family. The
major AAA+ protease in eukaryotic cells is the 26S proteasome, a 35-subunit complex that degrades proteins
marked with poly-ubiquitin chains and controls protein homeostasis as well as numerous vital processes.
Despite the proteasome’s great importance for cell viability, its detailed mechanisms for substrate selection
and processing, and in particular its regulation and fine-tuning, for instance by substrate-attached ubiquitin
chains, remain largely elusive. During the past granting period, we were able to significantly advance our
understanding of proteasome structure and function. We solved high-resolution structures of the substrate-
engaged proteasome at different stages of the ATP-hydrolysis cycle, established the first complete kinetic
picture of substrate degradation, revealed how major conformational changes of the proteasome are coupled
to individual steps of substrate processing, and uncovered how these conformational transitions are in part
regulated by interactions between proteasomal subcomplexes. Our biochemical tools, recombinant expression
systems, and site-specific fluorescence-labeling strategies put us into a unique position to tackle the numerous
outstanding questions about ubiquitin-mediated protein turnover, the molecular mechanisms of the 26S
proteasome and other AAA+ motors, and the regulation of pathways connected to the ubiquitin-proteasome
system. Especially our newly established single-molecule FRET-based assays allow unprecedented studies of
substrate interactions and progression through the proteasome regulatory particle, as well as the
conformational dynamics of the proteasome. Exciting preliminary data indicate that substrate-attached ubiquitin
chains affect the conformational switching, the kinetics of substrate engagement and degradation, and the
unfolding power of the proteasome depending on the chain length and linkage type. A primary goal is to
investigate how the proteasome utilizes its three main ubiquitin receptors and allosteric networks between
proteasomal subcomplexes to read out this “ubiquitin code” and fine-tune its activities. We will employ a
multidisciplinary approach that includes in-vitro biochemical, single-molecule, and atomic-resolution structural
studies. A pathway upstream of the 26S proteasome is the AAA+ protein unfoldase Cdc48 (p97/VCP in
human). In a new research direction, we will use fluorescence- and FRET-based assays combined with a
series of differentially ubiquitinated and labeled model proteins to investigate how Cdc48 in complex with its
adaptor Ufd1/Npl4 engages and unfolds its substrates, and how the dynamics of Cdc48-adaptor interactions
determine substrate delivery, unfolding, and deubiquitination. Besides advancing our general understanding of
ubiquitin-dependent protein unfolding and degradation, our research also has substantial medical relevance
and offers great potential for the development of new small-molecule drugs, as both the 26S proteasome and
p97 fulfill numerous regulatory functions in all cells and play important roles in various human diseases.
项目概要
蛋白质降解受到 AAA+ 家族的 ATP 依赖性区室蛋白酶的严格调控。这
真核细胞中主要的 AAA+ 蛋白酶是 26S 蛋白酶体,它是一种降解蛋白质的 35 个亚基复合物
带有多聚泛素链,控制蛋白质稳态以及许多重要过程。
尽管蛋白酶体对细胞活力非常重要,但其底物选择的详细机制
和加工,特别是其调节和微调,例如通过底物附着的泛素
链,仍然基本上难以捉摸。在过去的资助期间,我们能够显着推进我们的
了解蛋白酶体的结构和功能。我们解决了基板的高分辨率结构-
在 ATP 水解循环的不同阶段参与蛋白酶体,建立了第一个完整的动力学
底物降解图片,揭示了蛋白酶体的主要构象变化是如何耦合的
到基板处理的各个步骤,并揭示了这些构象转变是如何部分地进行的
受蛋白酶体亚复合物之间的相互作用调节。我们的生化工具,重组表达
系统和位点特异性荧光标记策略使我们处于独特的地位来解决众多问题
关于泛素介导的蛋白质周转、26S 的分子机制的突出问题
蛋白酶体和其他 AAA+ 马达,以及与泛素蛋白酶体连接的途径的调节
系统。特别是我们新建立的基于单分子 FRET 的检测方法可以进行前所未有的研究
通过蛋白酶体调节颗粒的底物相互作用和进展,以及
蛋白酶体的构象动力学。令人兴奋的初步数据表明底物附着的泛素
链影响构象转换、底物接合和降解的动力学以及
蛋白酶体的展开能力取决于链长度和连接类型。主要目标是
研究蛋白酶体如何利用其三个主要泛素受体和之间的变构网络
蛋白酶体子复合物读出这个“泛素代码”并微调其活性。我们将聘请一名
多学科方法,包括体外生化、单分子和原子分辨率结构
研究。 26S 蛋白酶体上游的一条通路是 AAA+ 蛋白解折叠酶 Cdc48(p97/VCP
人类)。在一个新的研究方向中,我们将使用基于荧光和 FRET 的检测方法,并结合
一系列差异泛素化和标记的模型蛋白,以研究 Cdc48 如何与其复合
适配器 Ufd1/Npl4 接合并展开其底物,以及 Cdc48 适配器相互作用的动态
确定底物递送、解折叠和去泛素化。除了增进我们对
泛素依赖性蛋白质的展开和降解,我们的研究也具有重要的医学意义
26S蛋白酶体和26S蛋白酶体为新型小分子药物的开发提供了巨大的潜力
p97 在所有细胞中发挥多种调节功能,并在各种人类疾病中发挥重要作用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andreas Martin其他文献
Andreas Martin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andreas Martin', 18)}}的其他基金
ATP-Dependent Protein Unfolding and Translocation by the Eukaryotic Proteasome
真核蛋白酶体的 ATP 依赖性蛋白质解折叠和易位
- 批准号:
10461875 - 财政年份:2011
- 资助金额:
$ 31.29万 - 项目类别:
ATP-dependent protein unfolding and translocation by the eukaryotic proteasome
真核蛋白酶体的 ATP 依赖性蛋白质展开和易位
- 批准号:
8505502 - 财政年份:2011
- 资助金额:
$ 31.29万 - 项目类别:
ATP-dependent protein unfolding and translocation by the eukaryotic proteasome
真核蛋白酶体的 ATP 依赖性蛋白质解折叠和易位
- 批准号:
8690101 - 财政年份:2011
- 资助金额:
$ 31.29万 - 项目类别:
ATP-Dependent Protein Unfolding and Translocation by the Eukaryotic Proteasome
真核蛋白酶体的 ATP 依赖性蛋白质解折叠和易位
- 批准号:
10630925 - 财政年份:2011
- 资助金额:
$ 31.29万 - 项目类别:
ATP-dependent protein unfolding and translocation by the eukaryotic proteasome
真核蛋白酶体的 ATP 依赖性蛋白质展开和易位
- 批准号:
8290309 - 财政年份:2011
- 资助金额:
$ 31.29万 - 项目类别:
ATP-dependent protein unfolding and translocation by the eukaryotic proteasome
真核蛋白酶体的 ATP 依赖性蛋白质展开和易位
- 批准号:
8186314 - 财政年份:2011
- 资助金额:
$ 31.29万 - 项目类别:
相似海外基金
Exploring the effect of ATP hydrolysis on condensin ability to compact chromosomes
探索 ATP 水解对浓缩蛋白压缩染色体能力的影响
- 批准号:
364619 - 财政年份:2017
- 资助金额:
$ 31.29万 - 项目类别:
The Mechanism and Regulation of ATP Hydrolysis in a Viral Genome Packaging Motor
病毒基因组包装马达中 ATP 水解的机制和调控
- 批准号:
9327813 - 财政年份:2017
- 资助金额:
$ 31.29万 - 项目类别:
Analysis of coupling between substrate binding and ATP hydrolysis in canonical homo- and heterodimeric amino acid ABC import systems
经典同二聚体和异二聚体氨基酸 ABC 输入系统中底物结合与 ATP 水解之间的耦合分析
- 批准号:
315832426 - 财政年份:2016
- 资助金额:
$ 31.29万 - 项目类别:
Research Grants
Mechanisms of actin polymerization, ATP hydrolysis, and filament severing revealed by F-form crystal structures
F 型晶体结构揭示肌动蛋白聚合、ATP 水解和丝断裂的机制
- 批准号:
16K14708 - 财政年份:2016
- 资助金额:
$ 31.29万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Identification of key residues for control of the coupling between ATP hydrolysis and substrate transport of an ABC transporter
鉴定控制 ABC 转运蛋白 ATP 水解和底物转运之间耦合的关键残基
- 批准号:
26840048 - 财政年份:2014
- 资助金额:
$ 31.29万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Multisubunit viral ATPases that couple ATP-hydrolysis to genome translocation
将 ATP 水解与基因组易位耦合的多亚基病毒 ATP 酶
- 批准号:
9754155 - 财政年份:2012
- 资助金额:
$ 31.29万 - 项目类别:
Multisubunit viral ATPases that couple ATP-hydrolysis to genome translocation
将 ATP 水解与基因组易位耦合的多亚基病毒 ATP 酶
- 批准号:
8238803 - 财政年份:2012
- 资助金额:
$ 31.29万 - 项目类别:
Multisubunit viral ATPases that couple ATP-hydrolysis to genome translocation
将 ATP 水解与基因组易位耦合的多亚基病毒 ATP 酶
- 批准号:
8518398 - 财政年份:2012
- 资助金额:
$ 31.29万 - 项目类别:
Multisubunit viral ATPases that couple ATP-hydrolysis to genome translocation
将 ATP 水解与基因组易位耦合的多亚基病毒 ATP 酶
- 批准号:
8711498 - 财政年份:2012
- 资助金额:
$ 31.29万 - 项目类别:
Multisubunit viral ATPases that couple ATP-hydrolysis to genome translocation
将 ATP 水解与基因组易位耦合的多亚基病毒 ATP 酶
- 批准号:
8927018 - 财政年份:2012
- 资助金额:
$ 31.29万 - 项目类别:














{{item.name}}会员




