Structure-based design of coronavirus subunit vaccines
基于结构的冠状病毒亚单位疫苗设计
基本信息
- 批准号:10415747
- 负责人:
- 金额:$ 72.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-01 至 2023-04-30
- 项目状态:已结题
- 来源:
- 关键词:AffinityAnimal ModelBiochemicalBiological ModelsCoronavirusCoronavirus spike proteinDataDevelopmentEngineeringEnsureEpitopesEvaluationFaceFutureGoalsImmune responseImmune systemImmunizeImmunodominant EpitopesImmunologicsIndividualInfectionKnock-in MouseLengthLifeMasksMeasuresMiddle East Respiratory Syndrome CoronavirusMolecularMolecular ConformationMonoclonal AntibodiesMusPathogenicityPlayPolysaccharidesProteinsRecombinantsResearchRoleSARS coronavirusSiteSolidStructureSubunit VaccinesSurfaceVaccine DesignVaccinesViralViral VectorVirionVirusVirus Diseasesbasebetacoronaviruscombatcoronavirus receptorcoronavirus vaccinedesignimmunogenicimmunogenicityimprovedindexingnanoparticleneutralizing antibodynonhuman primatenovelnovel coronavirusnovel strategiespreservationprotective efficacyreceptor bindingscaffoldvaccine candidatevaccine developmentvaccine efficacy
项目摘要
Project Summary
Viral subunit vaccines are safe and convenient, but generally suffer low efficacy. Our overall hypothesis is that
an intrinsic limitation is associated with subunit vaccine designs in which artificially exposed surfaces of subunit
vaccines contain epitopes unfavorable for vaccine efficacy. The receptor-binding domain (RBD) of a
coronavirus spike protein consists of a core subdomain that serves as the structural scaffold and a receptor-
binding motif (RBM) that binds the receptor and contains neutralizing epitopes. The RBDs are prime
candidates for subunit vaccine designs. In preliminary studies, we identified epitopes on the core subdomain of
MERS coronavirus (MERS-CoV) RBD that were buried in the full-length spike protein but became artificially
exposed in recombinant RBDs. We further showed that these epitopes severely reduce vaccine efficacy by
inducing strong non-neutralizing immune responses and distracting the host immune system from reacting to
the neutralizing epitopes on the RBM. This novel finding reveals an intrinsic limitation of viral subunit vaccines
that the vaccine field had been unaware of. In this proposal, we aim to characterize this intrinsic limitation and
establish novel approaches to overcome it. We use the RBDs from highly pathogenic coronaviruses, including
MERS-CoV and SARS coronavirus (SARS-CoV), as the model system. This proposal contains three major
design approaches for coronavirus RBD vaccines. First, we will identify and characterize the artificially
exposed unfavorable epitopes on the core subdomain of coronavirus RBDs. To this end, we introduce a novel
concept, neutralizing immunogenicity index (NII), to evaluate the contribution of each epitope to the overall
vaccine efficacy. We will mask the negative epitopes on the core subdomain through glycan shielding or
resurfacing. This design enhances the efficacy of the individually optimized RBD vaccines. Second, we will
construct chimeric RBDs containing the core subdomain from one coronavirus RBD as the structural scaffold
and the RBM from another coronavirus RBD as the immunogenic sites. The unfavorable epitopes on the core
subdomain should have been silenced from the first design approach. The interface of the core subdomain and
RBM will be optimized to maximize the stability of the chimeric RBD vaccines. This design prepares us for the
emergence of highly pathogenic coronaviruses in the future. Third, we will construct nanoparticle-carried
coronavirus RBD vaccines in a way that artificially exposed unfavorable epitopes on the core subdomain are
re-buried at the molecular interfaces to enhance the RBD vaccine's efficacy. We will use mice to evaluate the
immunogenicity of the above engineered RBD vaccines and will use animal models (including hDPP4-knock-in
(KI)) mice and non-human primates) to assess the selected RBD vaccines against live coronavirus challenge.
Overall, this research establishes the artificially exposed unfavorable epitopes as the intrinsic limitation of viral
subunit vaccines and finds novel approaches to overcome it. Therefore, this research holds the promise of
making subunit vaccines a more successful and widely used strategy in combating virus infections.
项目摘要
病毒亚单位疫苗是安全和方便的,但通常具有低效力。我们的总体假设是
一种内在的限制与亚单位疫苗设计有关,
疫苗含有不利于疫苗效力的表位。受体结合结构域(RBD)的
冠状病毒刺突蛋白由作为结构支架的核心亚结构域和受体组成,
结合受体并含有中和表位的结合基序(RBM)。RBD是质数
用于亚单位疫苗设计的候选物。在初步的研究中,我们鉴定了在核心亚结构域上的表位,
MERS冠状病毒(MERS-CoV)RBD被埋在全长刺突蛋白中,但被人工合成为
暴露在重组RBD中。我们进一步表明,这些表位严重降低疫苗的效力,
诱导强烈的非中和性免疫应答并分散宿主免疫系统对
RBM上的中和表位这一新发现揭示了病毒亚单位疫苗的内在局限性
疫苗领域还没有意识到的在本提案中,我们旨在描述这种内在限制,
我们使用来自高致病性冠状病毒的RBD,包括
MERS-CoV和SARS冠状病毒(SARS-CoV)作为模型系统。该提案包含三个主要内容。
冠状病毒RBD疫苗的设计方法。首先,我们将人工识别和表征
暴露冠状病毒RBD核心亚结构域上的不利表位。为此,我们介绍一本小说
概念,中和免疫原性指数(NII),以评估每个表位对总体免疫原性的贡献。
疫苗效力我们将通过聚糖屏蔽来掩盖核心亚结构域上的阴性表位,
重铺路面这种设计增强了单独优化的RBD疫苗的效力。二是
构建以冠状病毒RBD核心亚结构域为骨架的嵌合RBD
和来自另一种冠状病毒RBD的RBM作为免疫原性位点。核心上的不利表位
子域应该从第一个设计方法中被静音。核心子域的接口,
将优化RBM以最大化嵌合RBD疫苗的稳定性。这个设计为我们准备了
高致病性冠状病毒的出现。第三,我们将构建纳米颗粒携带的
冠状病毒RBD疫苗的方式,人工暴露的核心亚结构域上的不利表位,
重新埋在分子界面,以提高RBD疫苗的效力。我们将使用小鼠来评估
本发明的目的是提供上述工程化RBD疫苗的免疫原性,并将使用动物模型(包括hDPP 4敲入
(KI))小鼠和非人灵长类动物),以评估所选RBD疫苗对抗活冠状病毒攻击的能力。
总之,本研究确立了人工暴露的不利表位是病毒的内在限制,
亚单位疫苗,并找到新的方法来克服它。因此,这项研究有希望,
使亚单位疫苗成为对抗病毒感染的更成功和广泛使用的策略。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lanying Du其他文献
Lanying Du的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lanying Du', 18)}}的其他基金
Project 2: Nanobodies as Novel Entry Inhibitors of Pandemic Viruses
项目 2:纳米抗体作为大流行病毒的新进入抑制剂
- 批准号:
10522811 - 财政年份:2022
- 资助金额:
$ 72.9万 - 项目类别:
Rational design and evaluation of novel mRNA vaccines against MERS-CoV
针对 MERS-CoV 的新型 mRNA 疫苗的合理设计和评估
- 批准号:
10335159 - 财政年份:2021
- 资助金额:
$ 72.9万 - 项目类别:
Rational design and evaluation of novel mRNA vaccines against MERS-CoV
针对 MERS-CoV 的新型 mRNA 疫苗的合理设计和评估
- 批准号:
10410839 - 财政年份:2021
- 资助金额:
$ 72.9万 - 项目类别:
Structure-based design of coronavirus subunit vaccines
基于结构的冠状病毒亚单位疫苗设计
- 批准号:
10397563 - 财政年份:2021
- 资助金额:
$ 72.9万 - 项目类别:
Novel nanobodies to prevent and treat SARS-CoV-2 and other pathogenic human coronaviruses
用于预防和治疗 SARS-CoV-2 和其他致病性人类冠状病毒的新型纳米抗体
- 批准号:
10411118 - 财政年份:2020
- 资助金额:
$ 72.9万 - 项目类别:
Novel nanobodies to prevent and treat SARS-CoV-2 and other pathogenic human coronaviruses
用于预防和治疗 SARS-CoV-2 和其他致病性人类冠状病毒的新型纳米抗体
- 批准号:
10168173 - 财政年份:2020
- 资助金额:
$ 72.9万 - 项目类别:
Novel nanobodies to prevent and treat SARS-CoV-2 and other pathogenic human coronaviruses
用于预防和治疗 SARS-CoV-2 和其他致病性人类冠状病毒的新型纳米抗体
- 批准号:
10662297 - 财政年份:2020
- 资助金额:
$ 72.9万 - 项目类别:
Novel nanobodies to prevent and treat SARS-CoV-2 and other pathogenic human coronaviruses
用于预防和治疗 SARS-CoV-2 和其他致病性人类冠状病毒的新型纳米抗体
- 批准号:
10456313 - 财政年份:2020
- 资助金额:
$ 72.9万 - 项目类别:
A novel and effective nanobody to prevent and treat Zika virus infection
一种预防和治疗寨卡病毒感染的新型有效纳米抗体
- 批准号:
9920081 - 财政年份:2019
- 资助金额:
$ 72.9万 - 项目类别:
Structure-based design of coronavirus subunit vaccines
基于结构的冠状病毒亚单位疫苗设计
- 批准号:
9914088 - 财政年份:2018
- 资助金额:
$ 72.9万 - 项目类别:
相似海外基金
Quantification of Neurovasculature Changes in a Post-Hemorrhagic Stroke Animal-Model
出血性中风后动物模型中神经血管变化的量化
- 批准号:
495434 - 财政年份:2023
- 资助金额:
$ 72.9万 - 项目类别:
Bioactive Injectable Cell Scaffold for Meniscus Injury Repair in a Large Animal Model
用于大型动物模型半月板损伤修复的生物活性可注射细胞支架
- 批准号:
10586596 - 财政年份:2023
- 资助金额:
$ 72.9万 - 项目类别:
A Comparison of Treatment Strategies for Recovery of Swallow and Swallow-Respiratory Coupling Following a Prolonged Liquid Diet in a Young Animal Model
幼年动物模型中长期流质饮食后吞咽恢复和吞咽呼吸耦合治疗策略的比较
- 批准号:
10590479 - 财政年份:2023
- 资助金额:
$ 72.9万 - 项目类别:
Small animal model for evaluating the impacts of cleft lip repairing scar on craniofacial growth and development
评价唇裂修复疤痕对颅面生长发育影响的小动物模型
- 批准号:
10642519 - 财政年份:2023
- 资助金额:
$ 72.9万 - 项目类别:
Diurnal grass rats as a novel animal model of seasonal affective disorder
昼夜草鼠作为季节性情感障碍的新型动物模型
- 批准号:
23K06011 - 财政年份:2023
- 资助金额:
$ 72.9万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Longitudinal Ocular Changes in Naturally Occurring Glaucoma Animal Model
自然发生的青光眼动物模型的纵向眼部变化
- 批准号:
10682117 - 财政年份:2023
- 资助金额:
$ 72.9万 - 项目类别:
A whole animal model for investigation of ingested nanoplastic mixtures and effects on genomic integrity and health
用于研究摄入的纳米塑料混合物及其对基因组完整性和健康影响的整体动物模型
- 批准号:
10708517 - 财政年份:2023
- 资助金额:
$ 72.9万 - 项目类别:
A Novel Large Animal Model for Studying the Developmental Potential and Function of LGR5 Stem Cells in Vivo and in Vitro
用于研究 LGR5 干细胞体内外发育潜力和功能的新型大型动物模型
- 批准号:
10575566 - 财政年份:2023
- 资助金额:
$ 72.9万 - 项目类别:
Elucidating the pathogenesis of a novel animal model mimicking chronic entrapment neuropathy
阐明模拟慢性卡压性神经病的新型动物模型的发病机制
- 批准号:
23K15696 - 财政年份:2023
- 资助金额:
$ 72.9万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
The effect of anti-oxidant on swallowing function in an animal model of dysphagia
抗氧化剂对吞咽困难动物模型吞咽功能的影响
- 批准号:
23K15867 - 财政年份:2023
- 资助金额:
$ 72.9万 - 项目类别:
Grant-in-Aid for Early-Career Scientists