Predictive models for incident cirrhosis in non-alcoholic fatty liver disease using genetic and electronic medical record-based risk factors

使用基于遗传和电子病历的危险因素对非酒精性脂肪肝病中的肝硬化事件进行预测模型

基本信息

项目摘要

Project Summary/Abstract Non-alcoholic fatty liver disease (NAFLD) affects >80 million people in the United States and is implicated in up 36% of liver-related deaths. While NAFLD is the fastest-growing cause of cirrhosis and liver-related complications, not all patients with NAFLD ultimately develop cirrhosis. Our ability to identify which patients are at highest risk is limited, which makes it challenging to allocate intensive lifestyle intervention and pharmacologic therapy to those at highest risk. The strongest predictor of incident cirrhosis is fibrosis stage, but existing fibrosis only identifies patients who have already progressed toward cirrhosis and requires advanced phenotyping such as biopsy or transient elastography which are not universally available. It will be critical to develop improved models for disease progression. This project focuses on two factors which may improve risk stratification of progression to cirrhosis: genetics and machine learning using electronic medical record (EMR) data. Heritability of liver fibrosis and cirrhosis is as high as 50%, and a number of genetic variants have been linked to risk of cirrhosis. The EMR is a rich but complex source of data used in clinical practice. When constructing models with such high-dimensional data, non-linear effects and interactions between predictors are common; machine learning algorithms may outperform the more commonly-used logistic regression models in this respect. The overall goal of this project is to generate predictive models for which patients with NAFLD are most likely to progress to cirrhosis by integrating genetics and EMR-based predictors with machine learning. The specific aims are (1) characterizing the effect of genetic risk factors on rate of progression from NAFLD to cirrhosis, (2) training and validating machine learning models for incident cirrhosis based on EMR data, and (3) generating integrated models incorporating both EMR and genetic data. To accomplish these aims, Dr. Chen will obtain further training in processing of EMR data, the fundamentals of statistical genetics, and machine learning and predictive modeling. Dr. Chen’s long-term goal is to become a leading, independent investigator generating models to predict outcomes in NAFLD and eventually even prioritize patients for treatment accordingly. An NIDDK K08 award will provide Dr. Chen with the necessary time and training to achieve his career goals and improve care for patients with NAFLD. Overall, this project will improve ability to predict which patients with NAFLD are most likely to develop cirrhosis and therefore enhance precision health by helping medical providers prioritize persons at highest risk to more intensive intervention.
项目总结/摘要 非酒精性脂肪性肝病(NAFLD)影响着美国超过8000万人,并与以下疾病有关: 肝脏相关死亡的36%。虽然NAFLD是肝硬化和肝脏相关疾病增长最快的原因, 尽管有并发症,但并非所有NAFLD患者最终都会发展为肝硬化。我们能够识别哪些病人 处于最高风险的人是有限的,这使得分配密集的生活方式干预具有挑战性, 对高危人群进行药物治疗。发生肝硬化的最强预测因子是纤维化分期, 但现有的纤维化仅识别已经进展为肝硬化的患者, 高级表型分型,如活组织检查或瞬时弹性成像,这不是普遍可用的。将 这对于开发改进的疾病进展模型至关重要。该项目侧重于两个因素, 改善肝硬化进展风险分层:使用电子医学的遗传学和机器学习 记录(EMR)数据。肝纤维化和肝硬化的遗传率高达50%,且有许多遗传因素 变异与肝硬化的风险有关。EMR是临床应用中使用的丰富但复杂的数据源。 实践当用这种高维数据构建模型时,非线性效应和相互作用 机器学习算法可能优于更常用的 逻辑回归模型在这方面。该项目的总体目标是生成预测模型, NAFLD患者最有可能通过整合遗传学和基于EMR的 机器学习的预测器具体目标是(1)描述遗传危险因素对 从NAFLD到肝硬化的进展速度,(2)训练和验证用于事件的机器学习模型 基于EMR数据的肝硬化,以及(3)生成结合EMR和遗传数据的集成模型。 为了实现这些目标,陈博士将获得进一步的培训,在电子病历数据处理,基础知识, 统计遗传学、机器学习和预测建模。陈博士的长期目标是成为 领先的独立研究者生成模型来预测NAFLD的结果, 相应地优先治疗患者。NIDDK K 08奖将为陈博士提供必要的 时间和培训,以实现他的职业目标,并改善对NAFLD患者的护理。总的来说,这个项目 将提高预测哪些NAFLD患者最有可能发展为肝硬化的能力, 通过帮助医疗服务提供者优先考虑风险最高的人, 干预

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Vincent Lingzhi Chen其他文献

Vincent Lingzhi Chen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Vincent Lingzhi Chen', 18)}}的其他基金

Predictive models for incident cirrhosis in non-alcoholic fatty liver disease using genetic and electronic medical record-based risk factors
使用基于遗传和电子病历的危险因素对非酒精性脂肪肝病中的肝硬化事件进行预测模型
  • 批准号:
    10612450
  • 财政年份:
    2022
  • 资助金额:
    $ 16.93万
  • 项目类别:

相似海外基金

Hormone therapy, age of menopause, previous parity, and APOE genotype affect cognition in aging humans.
激素治疗、绝经年龄、既往产次和 APOE 基因型会影响老年人的认知。
  • 批准号:
    495182
  • 财政年份:
    2023
  • 资助金额:
    $ 16.93万
  • 项目类别:
Investigating how alternative splicing processes affect cartilage biology from development to old age
研究选择性剪接过程如何影响从发育到老年的软骨生物学
  • 批准号:
    2601817
  • 财政年份:
    2021
  • 资助金额:
    $ 16.93万
  • 项目类别:
    Studentship
RAPID: Coronavirus Risk Communication: How Age and Communication Format Affect Risk Perception and Behaviors
RAPID:冠状病毒风险沟通:年龄和沟通方式如何影响风险认知和行为
  • 批准号:
    2029039
  • 财政年份:
    2020
  • 资助金额:
    $ 16.93万
  • 项目类别:
    Standard Grant
Neighborhood and Parent Variables Affect Low-Income Preschool Age Child Physical Activity
社区和家长变量影响低收入学龄前儿童的身体活动
  • 批准号:
    9888417
  • 财政年份:
    2019
  • 资助金额:
    $ 16.93万
  • 项目类别:
The affect of Age related hearing loss for cognitive function
年龄相关性听力损失对认知功能的影响
  • 批准号:
    17K11318
  • 财政年份:
    2017
  • 资助金额:
    $ 16.93万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Affect regulation and Beta Amyloid: Maturational Factors in Aging and Age-Related Pathology
影响调节和 β 淀粉样蛋白:衰老和年龄相关病理学中的成熟因素
  • 批准号:
    9320090
  • 财政年份:
    2017
  • 资助金额:
    $ 16.93万
  • 项目类别:
Affect regulation and Beta Amyloid: Maturational Factors in Aging and Age-Related Pathology
影响调节和 β 淀粉样蛋白:衰老和年龄相关病理学中的成熟因素
  • 批准号:
    10166936
  • 财政年份:
    2017
  • 资助金额:
    $ 16.93万
  • 项目类别:
Affect regulation and Beta Amyloid: Maturational Factors in Aging and Age-Related Pathology
影响调节和 β 淀粉样蛋白:衰老和年龄相关病理学中的成熟因素
  • 批准号:
    9761593
  • 财政年份:
    2017
  • 资助金额:
    $ 16.93万
  • 项目类别:
How age dependent molecular changes in T follicular helper cells affect their function
滤泡辅助 T 细胞的年龄依赖性分子变化如何影响其功能
  • 批准号:
    BB/M50306X/1
  • 财政年份:
    2014
  • 资助金额:
    $ 16.93万
  • 项目类别:
    Training Grant
Inflamm-aging: What do we know about the effect of inflammation on HIV treatment and disease as we age, and how does this affect our search for a Cure?
炎症衰老:随着年龄的增长,我们对炎症对艾滋病毒治疗和疾病的影响了解多少?这对我们寻找治愈方法有何影响?
  • 批准号:
    288272
  • 财政年份:
    2013
  • 资助金额:
    $ 16.93万
  • 项目类别:
    Miscellaneous Programs
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了