A deep-transfer-learning framework to transfer clinical information to single cells and spatial locations in cancer tissues
一种深度迁移学习框架,可将临床信息转移到癌症组织中的单细胞和空间位置
基本信息
- 批准号:10424763
- 负责人:
- 金额:$ 21.35万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-01 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:AddressArchitectureBioconductorBiologicalCancer PatientCellsCharacteristicsClinicalCommunitiesDataData ReportingData SetDevelopmentExplosionFundingGene ExpressionGlioblastomaGoalsHigh-Risk CancerHistologyImageImage AnalysisIndividualInternetKnowledgeLabelLearningLeftLibrariesLinkLocationMachine LearningMalignant NeoplasmsMethodsModalityModelingMolecularMolecular ProfilingMultiple MyelomaNeoplasm MetastasisNeural Network SimulationNon-Small-Cell Lung CarcinomaNuclearOutcomePancreatic AdenocarcinomaPancreatic Ductal AdenocarcinomaPatient TransferPatient riskPatient-Focused OutcomesPatientsPharmaceutical PreparationsPhenotypePopulationPropertyPythonsRelapseResearchResearch PersonnelResolutionRiskSamplingSourceSubgroupTechniquesTestingTextureTissuesTreatment ProtocolsTumor TissueType - attributeanticancer researchbasecancer cell subtypecancer typecell typecohortdeep learningdeep learning modeldeep neural networkdensityfield studyhigh riskimprovedindividualized medicineinformation modellearning algorithmlearning strategymalignant breast neoplasmmalignant stomach neoplasmmultiple datasetsnew therapeutic targetnovelpatient stratificationresponsesingle cell sequencingsingle-cell RNA sequencingtargeted treatmenttherapy designtooltranscriptome sequencingtranscriptomicstransfer learningtriple-negative invasive breast carcinomatumortumor heterogeneityweb app
项目摘要
SUMMARY
In the past 10 years, there has been an explosion of new high-resolution molecular data which revolutionize the
way that cancer is understood and treated. They include, single cell transcriptomics, spatial transcriptomics, and
computational image analysis. However, the study of the association of those data with clinical outcomes such
as survival, relapse, metastasis and drug response were left behind. In the meantime, Deep learning field is
maturing very fast with many diverse applications including on biological data. It frequently utilizes multi-layer
neural network models to learn and extract highly non-linear representations of data. Transfer learning is the
subfield of machine learning, which focuses on transferring knowledge learned from a set of source examples to
another types of samples. Combining these two approaches constitutes deep transfer learning and is a promising
solution to investigate and understand the association of high-resolution components of these new cancer data
with the corresponding clinical outcomes. Here we propose the use of deep transfer learning to transfer patient
outcome information learned from large patient transcriptomics cohorts to the cells, cell types, spatial regions,
and image features, which can then be further prioritized by their assigned risks and be evaluated as potential
targets in the aggressive cancers. Specifically, we will develop deep transfer learning frameworks DEGAS for
cell type prioritization and test on glioblastoma and multiple myeloma single cell data to validate this approach.
Then it will be applied on single cell data of more aggressive cancer types such as triple negative breast cancer,
pancreatic ductal adenocarcinoma, non-small-cell lung cancer, and gastric cancer to prioritize high risk cells and
cell types. Then, it will be further modified for use with spatial transcriptomic (ST) data to prioritize high risk
spatial regions of breast cancer and pancreatic ductal adenocarcinoma tumors. Since ST data can act as a
bridge between single cell to patient-level transcriptomics, and histology images. We will further leverage our
framework to identify high risk image features by linking histology image features to patient risk via ST data.
Finally, our framework will be built into R and Python packages available through GitHub and Bioconductor for
use by the broader cancer research community.
摘要
在过去的10年里,出现了新的高分辨率分子数据的爆炸性增长,这些数据彻底改变了
了解和治疗癌症的方式。它们包括单细胞转录学、空间转录学和
计算图像分析。然而,对这些数据与临床结果的相关性的研究
患者的生存、复发、转移和药物反应均被抛在脑后。与此同时,深度学习领域正在
随着许多不同的应用,包括在生物数据方面,成熟得非常快。它经常使用多层
神经网络模型用于学习和提取高度非线性的数据表示。迁移学习是
机器学习的子领域,其重点是将从一组源示例学到的知识转移到
另一种类型的样品。这两种方法的结合构成了深度迁移学习,是一种很有前途的方法
调查和了解这些新癌症数据的高分辨率分量之间的关联的解决方案
以及相应的临床结果。在这里,我们建议使用深度迁移学习来转移患者
从大型患者转录组获得的结果信息到细胞、细胞类型、空间区域、
和图像功能,然后可以根据其分配的风险进一步确定优先级,并将其评估为潜在的
侵袭性癌症的靶点。具体地说,我们将开发深度迁移学习框架Degas
对胶质母细胞瘤和多发性骨髓瘤的单细胞数据进行细胞类型优先排序和测试,以验证该方法。
然后它将应用于更具侵袭性的癌症类型的单细胞数据,如三阴性乳腺癌,
胰腺导管腺癌、非小细胞肺癌和胃癌优先考虑高危细胞和
单元类型。然后,将对其进行进一步修改,以用于空间转录(ST)数据,以确定高风险的优先顺序
乳腺癌和胰腺导管腺癌肿瘤的空间区域。由于ST数据可以充当
连接单细胞到患者水平的转录学和组织学图像的桥梁。我们将进一步利用我们的
通过ST数据将组织学图像特征与患者风险联系起来,以识别高风险图像特征的框架。
最后,我们的框架将被构建到R和Python包中,这些包可以通过GitHub和BioConductor获得
被更广泛的癌症研究社区使用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Travis Steele Johnson其他文献
Travis Steele Johnson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Travis Steele Johnson', 18)}}的其他基金
A deep-transfer-learning framework to transfer clinical information to single cells and spatial locations in cancer tissues
一种深度迁移学习框架,可将临床信息转移到癌症组织中的单细胞和空间位置
- 批准号:
10657426 - 财政年份:2022
- 资助金额:
$ 21.35万 - 项目类别:
相似海外基金
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 21.35万 - 项目类别:
Continuing Grant
CAREER: Creating Tough, Sustainable Materials Using Fracture Size-Effects and Architecture
职业:利用断裂尺寸效应和架构创造坚韧、可持续的材料
- 批准号:
2339197 - 财政年份:2024
- 资助金额:
$ 21.35万 - 项目类别:
Standard Grant
Travel: Student Travel Support for the 51st International Symposium on Computer Architecture (ISCA)
旅行:第 51 届计算机体系结构国际研讨会 (ISCA) 的学生旅行支持
- 批准号:
2409279 - 财政年份:2024
- 资助金额:
$ 21.35万 - 项目类别:
Standard Grant
Understanding Architecture Hierarchy of Polymer Networks to Control Mechanical Responses
了解聚合物网络的架构层次结构以控制机械响应
- 批准号:
2419386 - 财政年份:2024
- 资助金额:
$ 21.35万 - 项目类别:
Standard Grant
I-Corps: Highly Scalable Differential Power Processing Architecture
I-Corps:高度可扩展的差分电源处理架构
- 批准号:
2348571 - 财政年份:2024
- 资助金额:
$ 21.35万 - 项目类别:
Standard Grant
Collaborative Research: Merging Human Creativity with Computational Intelligence for the Design of Next Generation Responsive Architecture
协作研究:将人类创造力与计算智能相结合,设计下一代响应式架构
- 批准号:
2329759 - 财政年份:2024
- 资助金额:
$ 21.35万 - 项目类别:
Standard Grant
Hardware-aware Network Architecture Search under ML Training workloads
ML 训练工作负载下的硬件感知网络架构搜索
- 批准号:
2904511 - 财政年份:2024
- 资助金额:
$ 21.35万 - 项目类别:
Studentship
The architecture and evolution of host control in a microbial symbiosis
微生物共生中宿主控制的结构和进化
- 批准号:
BB/X014657/1 - 财政年份:2024
- 资助金额:
$ 21.35万 - 项目类别:
Research Grant
NSF Convergence Accelerator Track M: Bio-Inspired Surface Design for High Performance Mechanical Tracking Solar Collection Skins in Architecture
NSF Convergence Accelerator Track M:建筑中高性能机械跟踪太阳能收集表皮的仿生表面设计
- 批准号:
2344424 - 财政年份:2024
- 资助金额:
$ 21.35万 - 项目类别:
Standard Grant
RACCTURK: Rock-cut Architecture and Christian Communities in Turkey, from Antiquity to 1923
RACCTURK:土耳其的岩石建筑和基督教社区,从古代到 1923 年
- 批准号:
EP/Y028120/1 - 财政年份:2024
- 资助金额:
$ 21.35万 - 项目类别:
Fellowship