Murine cardiac vector-flow imaging with high-frequency 2D row-column CMUT arrays
使用高频 2D 行列 CMUT 阵列进行小鼠心脏矢量流成像
基本信息
- 批准号:10444079
- 负责人:
- 金额:$ 76.65万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAnimal ModelAnimalsBlood flowCardiacCardiomyopathiesCardiovascular DiseasesCardiovascular PhysiologyCause of DeathCessation of lifeCharacteristicsComplexDataDeveloped CountriesDevelopmentDiagnosisDilatation - actionDiscriminationDiseaseDisease modelEarly DiagnosisElementsFailureFrequenciesGoalsHandHeartHeart failureHumanHypertrophyImageImaging DeviceImaging TechniquesItalyLeft ventricular structureLife ExpectancyMeasuresMechanicsMethodsModalityModelingMorbidity - disease rateMouse StrainsMusMyocardialMyocardial dysfunctionPathogenesisPathologicPatientsPatternPerformancePhenotypePhysiologyScanningSignal TransductionSpeedStressSystemTechniquesTestingTextThree-Dimensional ImagingTimeTractionTranslatingUltrasonographyaggressive therapyanimal imagingbaseburden of illnessconstrictiondesigndiagnostic toolheart imaginghemodynamicshigh riskimaging approachin vivoinstrumentationmanmillisecondmouse modelnoveloperationpre-clinicalpreclinical imagingpressureresponseserial imagingtargeted treatmenttemporal measurementtoolultrasoundvectorventricular hypertrophy
项目摘要
Project Summary/Abstract
Cardiovascular disease (CVD) accounts for one of every three deaths each year in the U.S. A substantial pro-
portion of patients with cardiovascular disease develop myocardial dysfunction. Imaging tools that permit early
detection of abnormal hemodynamics and/or mechanics provide an opportunity to initiate targeted therapeutics
and diminish the burden of disease. Mice are the most common model organism for translational CVD studies
of the mammalian heart. Ultrasound (US) is now extensively used in small animals to obtain cardiac functional
parameters. However, advanced US intracardiac vector-flow imaging techniques that are gaining traction for hu-
man CVD, such as cardiomyopathies, have yet to translate to preclinical use, thus, limiting the functional cardiac
parameters that can be obtained from mice. The ability to employ US vector-flow methods to simultaneously re-
solve complex, intracardiac blood flow patterns and cardiac mechanics at sub-millisec temporal resolution, prior
to overt structural and functional abnormalities, would add a new preclinical tool to study the interplay between
blood flow, cardiac mechanics and adaptation in CVD mouse models.
The goal of this project is to develop a novel, 30-MHz, 2D CMUT, row-column (RC) high-frequency-ultrasound
array and a plane-wave vector-flow imaging approach capable of sub-ms, full-frame image capture for intracardiac
imaging in mice. Unlike a standard linear array, the 2D CMUT array will allow dynamic, hands-free selection
of the optimal scan plane and the ability to acquire data in orthogonal image planes. In addition, the CMUT
array will allow us to collect data in adjacent planes to provide a 3D view of flow dynamics within the murine
heart. To validate our system and demonstrate the utility for small-animal imaging, we will study intracardiac left
ventricle (LV) blood flow patterns in two highly related mouse strains that nonetheless display divergent responses
(progressive hypertrophy vs. dilatation and failure) to abnormal pressure overload induced by the well-established
model of transverse aortic constriction (TAC). We hypothesize that our vector-flow system will be able to quantify
abnormal left ventricle flow patterns relative to sham control mice and that we will be able to detect flow disruption
prior to changes in traditional functional echo or strain measures. Importantly, we also hypothesize that distinct
flow pattern signatures can be identified early in the course of disease that will permit discrimination between
hearts that are destined to develop progressive hypertrophy vs. dilation. The ability to detect subtle phenotypic
changes in common mouse models of CVD that are a result of early-stage diseases or therapies may translate
to earlier and more aggressive treatment of patients at highest risk of pressure-overload induced heart failure.
项目总结/摘要
心血管疾病(CVD)占美国每年死亡人数的三分之一。
部分心血管疾病患者发生心肌功能障碍。成像工具,允许早期
异常血液动力学和/或力学的检测提供了启动靶向治疗的机会
减少疾病的负担。小鼠是转化性CVD研究中最常见的模式生物
哺乳动物的心脏。超声(US)现在广泛用于小动物以获得心脏功能
参数然而,先进的美国心内向量流成像技术正在为人类的发展提供牵引力。
人CVD,如心肌病,尚未转化为临床前使用,因此,限制了功能性心脏
可以从小鼠获得的参数。采用US矢量流方法同时重建
以亚毫秒的时间分辨率解决复杂的心内血流模式和心脏力学,
明显的结构和功能异常,将增加一个新的临床前工具,研究之间的相互作用
血液流变学、心脏力学和适应性。
本项目的目标是开发一种新型的,30 MHz,2D CMUT,行列(RC)高频超声
阵列和平面波矢量流成像方法,能够进行心内全帧亚毫秒图像捕获
在小鼠中成像。与标准线性阵列不同,2D CMUT阵列将允许动态、免提选择
最佳扫描平面和在正交图像平面中采集数据的能力。此外,CMUT
阵列将允许我们收集相邻平面中的数据,以提供小鼠体内血流动力学的3D视图
心为了验证我们的系统,并证明小动物成像的实用性,我们将研究心内左
心室(LV)血流模式在两个高度相关的小鼠品系,但显示不同的反应
(进行性肥大vs.扩张和衰竭)与由公认的
横主动脉缩窄(TAC)模型。我们假设我们的矢量流系统能够量化
与假手术对照小鼠相比,左心室血流模式异常,我们将能够检测到血流中断
在传统的功能性回声或应变测量改变之前。重要的是,我们还假设,
在疾病过程的早期就可以识别出艾德的血流模式特征,
注定要发展为进行性肥大而不是扩张的心脏。检测细微表型的能力
早期疾病或治疗导致的常见CVD小鼠模型的变化可能会转化为
更早和更积极地治疗压力超负荷诱发心力衰竭风险最高的患者。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Glenn I Fishman其他文献
Glenn I Fishman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Glenn I Fishman', 18)}}的其他基金
Transcriptional regulation in the ventricular conduction system
心室传导系统的转录调节
- 批准号:
10063955 - 财政年份:2019
- 资助金额:
$ 76.65万 - 项目类别:
Transcriptional regulation in the ventricular conduction system
心室传导系统的转录调节
- 批准号:
10323660 - 财政年份:2019
- 资助金额:
$ 76.65万 - 项目类别:
相似海外基金
Quantification of Neurovasculature Changes in a Post-Hemorrhagic Stroke Animal-Model
出血性中风后动物模型中神经血管变化的量化
- 批准号:
495434 - 财政年份:2023
- 资助金额:
$ 76.65万 - 项目类别:
Small animal model for evaluating the impacts of cleft lip repairing scar on craniofacial growth and development
评价唇裂修复疤痕对颅面生长发育影响的小动物模型
- 批准号:
10642519 - 财政年份:2023
- 资助金额:
$ 76.65万 - 项目类别:
Bioactive Injectable Cell Scaffold for Meniscus Injury Repair in a Large Animal Model
用于大型动物模型半月板损伤修复的生物活性可注射细胞支架
- 批准号:
10586596 - 财政年份:2023
- 资助金额:
$ 76.65万 - 项目类别:
A Comparison of Treatment Strategies for Recovery of Swallow and Swallow-Respiratory Coupling Following a Prolonged Liquid Diet in a Young Animal Model
幼年动物模型中长期流质饮食后吞咽恢复和吞咽呼吸耦合治疗策略的比较
- 批准号:
10590479 - 财政年份:2023
- 资助金额:
$ 76.65万 - 项目类别:
Diurnal grass rats as a novel animal model of seasonal affective disorder
昼夜草鼠作为季节性情感障碍的新型动物模型
- 批准号:
23K06011 - 财政年份:2023
- 资助金额:
$ 76.65万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Longitudinal Ocular Changes in Naturally Occurring Glaucoma Animal Model
自然发生的青光眼动物模型的纵向眼部变化
- 批准号:
10682117 - 财政年份:2023
- 资助金额:
$ 76.65万 - 项目类别:
A whole animal model for investigation of ingested nanoplastic mixtures and effects on genomic integrity and health
用于研究摄入的纳米塑料混合物及其对基因组完整性和健康影响的整体动物模型
- 批准号:
10708517 - 财政年份:2023
- 资助金额:
$ 76.65万 - 项目类别:
A Novel Large Animal Model for Studying the Developmental Potential and Function of LGR5 Stem Cells in Vivo and in Vitro
用于研究 LGR5 干细胞体内外发育潜力和功能的新型大型动物模型
- 批准号:
10575566 - 财政年份:2023
- 资助金额:
$ 76.65万 - 项目类别:
Elucidating the pathogenesis of a novel animal model mimicking chronic entrapment neuropathy
阐明模拟慢性卡压性神经病的新型动物模型的发病机制
- 批准号:
23K15696 - 财政年份:2023
- 资助金额:
$ 76.65万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
The effect of anti-oxidant on swallowing function in an animal model of dysphagia
抗氧化剂对吞咽困难动物模型吞咽功能的影响
- 批准号:
23K15867 - 财政年份:2023
- 资助金额:
$ 76.65万 - 项目类别:
Grant-in-Aid for Early-Career Scientists