Tracer harmonization for amyloid and tau PET imaging using statistical and deep learning techniques
使用统计和深度学习技术协调淀粉样蛋白和 tau PET 成像的示踪剂
基本信息
- 批准号:10444803
- 负责人:
- 金额:$ 228.24万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-01 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:AdoptedAffinityAgreementAlzheimer disease preventionAlzheimer&aposs DiseaseAlzheimer&aposs disease pathologyAmyloidAnatomyAppearanceBehaviorBindingBrainCalibrationCharacteristicsClinicalCommunitiesDataData SetDerivation procedureDetectionDevelopmentDiagnosisDiagnosticHeadImageKineticsLeadLeast-Squares AnalysisLinear RegressionsMachine LearningMeasurementModelingMolecular StructureMulticenter StudiesNoiseParticipantPathogenesisPathologyPatient-Focused OutcomesPhasePlayPositron-Emission TomographyPropertyProtocols documentationPublishingResearchResearch SupportRoleScanningSenile PlaquesSignal TransductionSliceStandardizationSymptomsTechniquesThree-Dimensional ImagingTracerValidationVariantVisualamyloid imagingartificial neural networkbasecohortdeep learningdeep learning modeldesigneffective therapyhead-to-head comparisonhuman imagingimaging modalityimprovedin vivoindexinglarge datasetsnext generationnovelprognosticstatistical and machine learningstatistical learningsuccesstau Proteinstherapy developmentwhite matterworking groupβ-amyloid burden
项目摘要
PROJECT SUMMARY/ABSTRACT
Amyloid and tau are two hallmark pathologies of Alzheimer's disease (AD), which start to accumulate in the brain
long before clinical symptom onset. With the recent development of positron emission tomography (PET) tracers,
in vivo measurements of these two pathologies became possible and play important roles in improving our
understanding of AD pathogenesis and progression, and provide critical diagnostic and prognostic information
that can facilitate the treatment development effort now and improve patient outcome when effective treatments
become available. However, multiple PET tracers exist for both amyloid and tau imaging and generate images
that have different visual appearances and quantitative characteristics. These differences lead to difficulties in
comparing different studies, leveraging the large volume of data that have been collected to date, and defining
a common criterion for positivity. In this project, we will focus on the development of novel techniques that can
harmonize PET imaging data and generate highly compatible imaging derived measurements. We argue that by
adopting advanced statistical and deep learning techniques and developing novel quantification strategies that
take full use of the available information in imaging data, successful harmonization can be achieved via
generalizable approaches. Several lines of research support this argument: 1) we recently demonstrated that
using partial volume correction technique to reduce white matter signal contamination, improved agreements in
amyloid burden measurements derived from PIB and florbetapir can be obtained; 2) in our preliminary analysis,
using machine learning technique, we can substantially improve between-tracer agreements in global amyloid
burden; 3) recent advancement in deep learning research demonstrated the ability to “impute” one imaging
modality from another by taking advantage of the inherent information in large imaging datasets, and our
preliminary results demonstrated its potential in image harmonization tasks. In this project, we will continue this
research and develop a set of techniques that can be used to harmonize amyloid imaging data from different
tracers and extent this approach for tau PET harmonization. Our specific aims are 1) to develop deep learning
models that can generate imputed amyloid PET images from one tracer based on the images from another tracer;
2) to develop statistical learning approaches that can generate harmonized amyloid burden measurements; 3)
to acquire head-to-head comparison tau PET imaging data and examine statistical and deep learning
approaches to the harmonization of Tau PET imaging data.
项目摘要/摘要
淀粉样蛋白和tau蛋白是阿尔茨海默病(AD)的两种标志性病理,它们开始在大脑中积累
在临床症状出现之前很久。随着正电子发射断层扫描(PET)示踪剂的最新发展,
对这两种疾病的活体测量成为可能,并在改善我们的
了解AD的发病机制和进展,并提供关键的诊断和预后信息
这可以促进现在的治疗开发工作,并在有效的治疗时改善患者的结果
变得有空。然而,存在多个PET示踪剂,用于淀粉样蛋白和tau成像并生成图像
具有不同的视觉外观和数量特征。这些差异导致了在
比较不同的研究,利用迄今收集的大量数据,并确定
这是衡量积极程度的一个常见标准。在这个项目中,我们将专注于开发能够
协调PET成像数据并生成高度兼容的成像衍生测量结果。我们认为,通过
采用先进的统计和深度学习技术,开发新的量化策略,
充分利用成像数据中的可用信息,可以通过以下方式实现成功的协调
可概括的方法。有几条研究支持这一论点:1)我们最近证明了
使用部分体积校正技术减少脑白质信号污染,改进了
可以从PIB和florbetapir获得淀粉样蛋白负荷测量;2)在我们的初步分析中,
使用机器学习技术,我们可以显著改善全球淀粉样蛋白的示踪剂间协议
负担;3)深度学习研究的最新进展表明,有能力将一种成像“归因于”
通过利用大型成像数据集中的固有信息从另一种模式中分离出来,并且我们的
初步结果表明,它在图像协调任务中具有潜力。在这个项目中,我们将继续这样做
研究和开发一套可用于协调不同来源的淀粉样蛋白成像数据的技术
跟踪和扩展这种方法,以实现tau PET的协调。我们的具体目标是:1)发展深度学习
可以根据一种示踪剂的图像生成另一种示踪剂的淀粉样蛋白PET图像的模型;
2)开发统计学习方法,以产生协调的淀粉样蛋白负荷测量;3)
获取头对头对比的tau PET成像数据,并检查统计和深度学习
协调Tau PET成像数据的方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yi Su其他文献
Yi Su的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yi Su', 18)}}的其他基金
Feasibility of challenge-free QSM based quantitative mapping of cerebral metabolic rate of oxygen
基于无挑战 QSM 的脑氧代谢率定量图谱的可行性
- 批准号:
9322839 - 财政年份:2017
- 资助金额:
$ 228.24万 - 项目类别:
相似海外基金
Construction of affinity sensors using high-speed oscillation of nanomaterials
利用纳米材料高速振荡构建亲和传感器
- 批准号:
23H01982 - 财政年份:2023
- 资助金额:
$ 228.24万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Affinity evaluation for development of polymer nanocomposites with high thermal conductivity and interfacial molecular design
高导热率聚合物纳米复合材料开发和界面分子设计的亲和力评估
- 批准号:
23KJ0116 - 财政年份:2023
- 资助金额:
$ 228.24万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Platform for the High Throughput Generation and Validation of Affinity Reagents
用于高通量生成和亲和试剂验证的平台
- 批准号:
10598276 - 财政年份:2023
- 资助金额:
$ 228.24万 - 项目类别:
Development of High-Affinity and Selective Ligands as a Pharmacological Tool for the Dopamine D4 Receptor (D4R) Subtype Variants
开发高亲和力和选择性配体作为多巴胺 D4 受体 (D4R) 亚型变体的药理学工具
- 批准号:
10682794 - 财政年份:2023
- 资助金额:
$ 228.24万 - 项目类别:
Collaborative Research: DESIGN: Co-creation of affinity groups to facilitate diverse & inclusive ornithological societies
合作研究:设计:共同创建亲和团体以促进多元化
- 批准号:
2233343 - 财政年份:2023
- 资助金额:
$ 228.24万 - 项目类别:
Standard Grant
Collaborative Research: DESIGN: Co-creation of affinity groups to facilitate diverse & inclusive ornithological societies
合作研究:设计:共同创建亲和团体以促进多元化
- 批准号:
2233342 - 财政年份:2023
- 资助金额:
$ 228.24万 - 项目类别:
Standard Grant
Molecular mechanisms underlying high-affinity and isotype switched antibody responses
高亲和力和同种型转换抗体反应的分子机制
- 批准号:
479363 - 财政年份:2023
- 资助金额:
$ 228.24万 - 项目类别:
Operating Grants
Deconstructed T cell antigen recognition: Separation of affinity from bond lifetime
解构 T 细胞抗原识别:亲和力与键寿命的分离
- 批准号:
10681989 - 财政年份:2023
- 资助金额:
$ 228.24万 - 项目类别:
CAREER: Engineered Affinity-Based Biomaterials for Harnessing the Stem Cell Secretome
职业:基于亲和力的工程生物材料用于利用干细胞分泌组
- 批准号:
2237240 - 财政年份:2023
- 资助金额:
$ 228.24万 - 项目类别:
Continuing Grant
ADVANCE Partnership: Leveraging Intersectionality and Engineering Affinity groups in Industrial Engineering and Operations Research (LINEAGE)
ADVANCE 合作伙伴关系:利用工业工程和运筹学 (LINEAGE) 领域的交叉性和工程亲和力团体
- 批准号:
2305592 - 财政年份:2023
- 资助金额:
$ 228.24万 - 项目类别:
Continuing Grant