Multimodal MRI for guiding bacterial cancer therapy

多模态 MRI 指导细菌癌症治疗

基本信息

  • 批准号:
    10443928
  • 负责人:
  • 金额:
    $ 38.17万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-06-02 至 2027-05-31
  • 项目状态:
    未结题

项目摘要

In response to the specific FOA that explicitly focuses on microbial-based cancer therapy (Bugs as Drugs), we propose to develop reliable multimodal MRI guidance to improve the efficacy and safety of bacterial cancer therapies for treating poorly vascularized, hypoxic tumors, where conventional cancer therapies are inadequate. Even though some have managed to reach clinical trial status, the development of microbial-based therapeutics for solid tumors has been long hindered by inconsistent results. Researchers in the field of microbial-based therapeutics have a major problem of inadequate and inconsistent means of guiding, monitoring, and assessing results of administered microbial therapy. Currently, the patient recruitment criteria for bacterial therapy are not specific and suitability is mainly judged by tumor size. The surrogate markers for bacterial germination/infection are radiological signs of tumor destruction and/or clinical signs and symptoms of systemic infection. There is an urgent need for developing noninvasive imaging tools that can identify patients who likely respond (stratification) by tumor hypoxia and real-time, quantitively measure the germination and proliferation of therapeutic bacteria in target tumors. To address these unmet needs, we will develop and optimize two emerging imaging technologies in this study: a) bacteria-detecting Chemical Exchange Saturation Transfer (CEST) MRI method (namely bacCEST) to assess bacterial infection in the tumor, serving as a non-invasive means to monitor therapeutic effects and adjust the treatment plan, and b) Oxygen-Enhanced (OE) MRI to characterize tumor hypoxia and hence predict the tumors’ vulnerability to anaerobic bacteria. We hypothesize that that the efficacy and safety of bacterial treatment can be significantly improved using non-invasive, multimodal MRI methods that can characterize tumor hypoxia prior to treatment and monitor bacterial infection at early time points. We have strong preliminary data demonstrating the efficacy of C. novyi-NT and capabilities of advanced MRI technologies, and gathered a multidisciplinary team of oncologists and imaging experts to complete the following aims: 1) Establish bacteria-detecting bacCEST MRI as a surrogate marker for C. novyi-NT treatment, 2) Establish hypoxia- detecting OE MRI to stratify tumors and guide bacterial treatment, and 3) Establish multimodal MRI guidance to improve the efficacy and safety of bacterial cancer therapy. Successful completion of the proposed study will provide approaches for multimodal MRI guidance that can ultimately improve the success rate of cancer therapies using anaerobic bacteria, including but not limited to C. novyi-NT. This MRI platform technology, once translated to human scanners, will address an unmet need in bacterial treatment and can accelerate the development and clinical testing of bacterial therapies. It will also benefit other areas in medicine (e.g., infection medicine/sepsis), thereby pushing clinical capabilities forward.
针对明确以微生物为基础的癌症治疗(细菌作为药物)的特定FOA,我们

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Renyuan Bai其他文献

Renyuan Bai的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Renyuan Bai', 18)}}的其他基金

Multimodal MRI for guiding bacterial cancer therapy
多模态 MRI 指导细菌癌症治疗
  • 批准号:
    10633262
  • 财政年份:
    2022
  • 资助金额:
    $ 38.17万
  • 项目类别:
Adrenergic modulation of cellular immune functions in CAR T cell-induced cytokine release syndrome
CAR T 细胞诱导的细胞因子释放综合征中细胞免疫功能的肾上腺素调节
  • 批准号:
    10532157
  • 财政年份:
    2020
  • 资助金额:
    $ 38.17万
  • 项目类别:
Adrenergic modulation of cellular immune functions in CAR T cell-induced cytokine release syndrome
CAR T 细胞诱导的细胞因子释放综合征中细胞免疫功能的肾上腺素调节
  • 批准号:
    10304166
  • 财政年份:
    2020
  • 资助金额:
    $ 38.17万
  • 项目类别:
Adrenergic modulation of cellular immune functions in CAR T cell-induced cytokine release syndrome
CAR T 细胞诱导的细胞因子释放综合征中细胞免疫功能的肾上腺素调节
  • 批准号:
    9921965
  • 财政年份:
    2020
  • 资助金额:
    $ 38.17万
  • 项目类别:
Identify OTX2-interacting proteins repressing differentiation in medulloblastoma
鉴定抑制髓母细胞瘤分化的 OTX2 相互作用蛋白
  • 批准号:
    8883429
  • 财政年份:
    2014
  • 资助金额:
    $ 38.17万
  • 项目类别:
Identify OTX2-interacting proteins repressing differentiation in medulloblastoma
鉴定抑制髓母细胞瘤分化的 OTX2 相互作用蛋白
  • 批准号:
    8768857
  • 财政年份:
    2014
  • 资助金额:
    $ 38.17万
  • 项目类别:

相似海外基金

DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 38.17万
  • 项目类别:
    Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 38.17万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 38.17万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 38.17万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 38.17万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 38.17万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 38.17万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 38.17万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 38.17万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 38.17万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了