Developing Computational Methods for Surveillance of Antimicrobial Resistant Agents
开发监测抗菌药物的计算方法
基本信息
- 批准号:10292979
- 负责人:
- 金额:$ 42.23万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-11-26 至 2023-10-31
- 项目状态:已结题
- 来源:
- 关键词:AffectAgricultureAlgorithmsAntibiotic ResistanceAntibioticsAntimicrobial ResistanceAttentionBacteriaBase PairingBig DataBioinformaticsClinicalCollaborationsCombating Antibiotic Resistant BacteriaComputing MethodologiesDNADataData AnalysesData CompressionData SetDevelopmentDisease OutbreaksEffectiveness of InterventionsFloridaFood productionFoundationsGenesGenomicsGoalsGraphHospitalizationInfectionInternationalInvestigationLengthLocationMeasuresMemoryMetagenomicsMethodsMonitorNoiseOrganismPathogenicityPlasmidsPreventionPublic HealthResearchResistanceRiskSamplingShotgunsStructureSurveillance MethodsSystemTechniquesTimeTranslatingUnited States Department of AgricultureUpdateWorkantibiotic resistant infectionsbacterial resistancebasecombinatorialdrug resistant pathogeneffective interventionfoodborne outbreakgenetic varianthazardimprovedlarge datasetsmachine learning algorithmmethod developmentmicrobialmicrobiome analysismicrobiome researchmultiple datasetsnovelpathogenpetabytereconstructionresearch and developmentresistance genespatiotemporalstandard care
项目摘要
PROJECT ABSTRACT
Antimicrobial resistance is a critical public health issue. Infections with drug resistant pathogens are estimated
to cause an additional eight million hospitalization days annually over the hospitalizations that would be seen for
infections with susceptible agents. The use of antibiotics (in both clinical and agricultural settings) is being viewed
as precursor for these infections and thus, is a major public health concern—particularly as outbreaks become
more frequent and severe. However, scientific evidence describing the hazards associated with antibiotic use
is lacking due to inability to quantify the risk of these practices. One promising avenue to elucidate this risk is
to use shotgun metagenomics to identify the AMR genes in samples taken through systematic spatiotemporal
surveillance. The goal of this proposed work is to develop algorithms that will provide such a means for
analysis. The algorithms need to be scalable to very large datasets and thus, will require the development
and use succinct data structures.
In order to achieve this goal, the investigative team will develop the theoretical foundations and applied meth-
ods needed to study AMR through the use of shotgun metagenomics. A major focus of the proposed work is
developing algorithms that can handle very large datasets. To achieve this scalability, we will create novel means
to create, compress, reconstruct and update very large de Bruijn graphs that metagenomics data in a manner
needed to study AMR. In addition, we will pioneer the study of AMR through long read data by proposing new
algorithmic problems and solutions that use data. For example, identifying the location of specific genes in a
metagenomics sample using long read data has not been proposed or studied. Thus, the algorithmic ideas and
techniques developed in this project will not only advance the study of AMR, but contribute to the growing domain
of big data analysis and pan-genomics.
Lastly, we plan to apply our methods to samples collected from both agricultural and clinical settings in Florida.
Analysis of preliminary and new data will allow us to conclude about (1) the public risk associated with antimicro-
bial use in agriculture; (2) the effectiveness of interventions used to reduce resistant bacteria, and lastly, (3) the
factors that allow resistant bacteria to grow, thrive and evolve.
A–1
项目摘要
抗生素耐药性是一个关键的公共卫生问题。估计耐药病原体感染
导致每年额外的800万住院日,
感染易感病原体。抗生素的使用(在临床和农业环境中)
作为这些感染的前兆,因此是一个主要的公共卫生问题,特别是当爆发成为
更加频繁和严重。然而,描述与抗生素使用相关的危害的科学证据
由于无法量化这些做法的风险,因此缺乏这方面的信息。阐明这种风险的一个有希望的途径是
使用鸟枪宏基因组学来识别通过系统时空分析获得的样本中的AMR基因,
监视这项工作的目标是开发算法,将提供这样一种手段,
分析.这些算法需要可扩展到非常大的数据集,因此需要开发
并使用简洁的数据结构。
为了实现这一目标,调查小组将发展理论基础和应用方法,
ods需要通过使用鸟枪宏基因组学来研究AMR。拟议工作的一个主要重点是
开发可以处理非常大的数据集的算法。为了实现这种可扩展性,我们将创造新的手段,
创建、压缩、重建和更新非常大的de Bruijn图,
需要研究AMR。此外,我们将通过提出新的方法,
使用数据的算法问题和解决方案。例如,确定特定基因在一个
尚未提出或研究使用长读段数据的宏基因组学样品。因此,算法思想和
本项目开发的技术不仅将促进AMR的研究,而且有助于不断增长的领域
大数据分析和泛基因组学。
最后,我们计划将我们的方法应用于从佛罗里达的农业和临床环境中收集的样品。
对初步数据和新数据的分析将使我们能够得出以下结论:(1)与抗微生物药物相关的公共风险,
农业中的细菌使用;(2)用于减少耐药细菌的干预措施的有效性,最后,(3)
这些因素使耐药细菌得以生长、茁壮成长和进化。
A-1
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Christina Boucher其他文献
Christina Boucher的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Christina Boucher', 18)}}的其他基金
Developing Computational Methods for Surveillance of Antimicrobial Resistant Agents
开发监测抗菌药物的计算方法
- 批准号:
10517284 - 财政年份:2018
- 资助金额:
$ 42.23万 - 项目类别:
Developing Computational Methods for Surveillance of Antimicrobial Resistant Agents
开发监测抗菌药物的计算方法
- 批准号:
10053321 - 财政年份:2018
- 资助金额:
$ 42.23万 - 项目类别:
相似海外基金
COUSIN: Crop Wild Relatives utilisation and conservation for sustainable agriculture
表弟:作物野生近缘种的利用和保护以实现可持续农业
- 批准号:
10090949 - 财政年份:2024
- 资助金额:
$ 42.23万 - 项目类别:
EU-Funded
Research Infrastructure: Mid-scale RI-1 (MI:IP): X-rays for Life Sciences, Environmental Sciences, Agriculture, and Plant sciences (XLEAP)
研究基础设施:中型 RI-1 (MI:IP):用于生命科学、环境科学、农业和植物科学的 X 射线 (XLEAP)
- 批准号:
2330043 - 财政年份:2024
- 资助金额:
$ 42.23万 - 项目类别:
Cooperative Agreement
REU Site: Controlled Environment Agriculture (CEAfREU)
REU 站点:受控环境农业 (CEAfREU)
- 批准号:
2349765 - 财政年份:2024
- 资助金额:
$ 42.23万 - 项目类别:
Standard Grant
I-Corps: Intelligent Hydroponics Growing Platform for Sustainable Agriculture
I-Corps:可持续农业的智能水培种植平台
- 批准号:
2345854 - 财政年份:2024
- 资助金额:
$ 42.23万 - 项目类别:
Standard Grant
NSF Engines: North Dakota Advanced Agriculture Technology Engine
NSF 发动机:北达科他州先进农业技术发动机
- 批准号:
2315315 - 财政年份:2024
- 资助金额:
$ 42.23万 - 项目类别:
Cooperative Agreement
In Search of Future Farmers: Comparative Research on Young People's Exit from Agriculture in Rural Indonesia, Japan and Nepal
寻找未来农民:印度尼西亚、日本和尼泊尔农村年轻人退出农业的比较研究
- 批准号:
23K22187 - 财政年份:2024
- 资助金额:
$ 42.23万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Novel Biofertiliser for Sustainable Agriculture: Tackling Phosphorus Crisis
用于可持续农业的新型生物肥料:解决磷危机
- 批准号:
IM240100158 - 财政年份:2024
- 资助金额:
$ 42.23万 - 项目类别:
Mid-Career Industry Fellowships
Rural Development and Community Resiliency Through Agriculture Heritage Tourism
通过农业遗产旅游促进农村发展和社区复原力
- 批准号:
23K21819 - 财政年份:2024
- 资助金额:
$ 42.23万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Arboricrop: next generation agriculture using real-time information from trees crops
Arboricrop:利用树木作物实时信息的下一代农业
- 批准号:
10087410 - 财政年份:2024
- 资助金额:
$ 42.23万 - 项目类别:
Collaborative R&D
Advancing Controlled Environment Agriculture (CEA) with Dynamic LED Lighting Systems and Artificial Intelligence
利用动态 LED 照明系统和人工智能推进受控环境农业 (CEA)
- 批准号:
BB/Z514330/1 - 财政年份:2024
- 资助金额:
$ 42.23万 - 项目类别:
Research Grant