Role of RTEL1 in Microhomology-Mediated End Joining
RTEL1 在微同源介导的末端连接中的作用
基本信息
- 批准号:10304187
- 负责人:
- 金额:$ 23.25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-11-18 至 2023-10-31
- 项目状态:已结题
- 来源:
- 关键词:20q13BRCA deficientBiochemicalBiochemistryBiological AssayBreastCancer cell lineCellsChromosomal RearrangementDNADNA DamageDNA Double Strand BreakDNA RepairDNA SequenceDNA StructureDNA-Directed DNA PolymeraseDiseaseDouble Strand Break RepairEnvironmentEnvironmental HealthEnzymesEquilibriumEventExcisionExposure toFrequenciesGeneticGenetic EpistasisGenetic RecombinationGenomeGliomaGoalsImmunodeficiency and CancerIn VitroIntellectual functioning disabilityKnowledgeLeadMalignant NeoplasmsMalignant neoplasm of ovaryMediatingModelingMolecular GeneticsMutagenesisMutagensMutationNerve DegenerationNonhomologous DNA End JoiningOvarianPathologic MutagenesisPathologyPathway interactionsPharmaceutical PreparationsPharmacologyProteinsPulmonary FibrosisRadiationReactionRegulationReporterResearchResectedRoleSiteStructureTailTestingTherapeuticWorkanti-cancercancer celldrug sensitivitydruggable targetgenotoxicityhelicasehomologous recombinationinhibitorinnovationmalignant breast neoplasmneoplastic cellnervous system disordernovelpollutantpredictive modelingreconstitutionrepaired
项目摘要
PROJECT SUMMARY/ABSTRACT
Double-strand breaks (DSBs) can arise in DNA from exposure to radiation and pollutants prevalent in our
environment. Inaccurate repair of DSBs can lead to genome rearrangements, which can cause intellectual
disability, neurodegeneration, immunodeficiency, and cancer. DSBs are removed by two major pathways:
nonhomologous end joining (NHEJ) and homologous recombination (HR), which are dependent on different
factors and are mechanistically very distinct. Importantly, DNA breaks can also undergo microhomology-
mediated end joining (MMEJ), in which limited homology in the ssDNA tails exposed by end resection triggers
DNA strand annealing to initiate end joining repair. MMEJ leads to deletion of the DNA sequence situated
between the regions of microhomology. As such, MMEJ is highly mutagenic, and is a hallmark of cancer cells.
The discoveries that MMEJ possesses a dedicated DNA polymerase, POLq, and that it is employed frequently
even when NHEJ and HR are intact support the premise that MMEJ is an evolutionarily conserved DSB repair
pathway.
Tumor cells deficient in NHEJ and HR rely heavily on MMEJ for viability upon treatment with chemotherapeutic
DNA damaging agents. Inactivation of MMEJ would thus sensitize tumor cells to such treatments. A major goal
of current MMEJ research is to identify novel factors that regulate or directly catalyze MMEJ, to define the genetic
and biochemical underpinnings by which they function, and to test their value as potential druggable targets. We
have identified RTEL1 as a novel factor that is required for efficient MMEJ. RTEL1 encodes an essential DEAH
helicase that disassembles various DNA structures including a key recombination intermediate, the displacement
loop (D-loop). We hypothesize that RTEL1 promotes MMEJ by dissociating D-loop structures that otherwise
compete with MMEJ. Our model explains several enigmatic observations regarding the inhibitory roles of HR
factors in MMEJ and provides a mechanistic framework for understanding the pathology of RTEL1-associated
diseases. We will test this innovative idea using a combination of molecular genetics and in vitro biochemistry.
This project will better define the mechanism of MMEJ and its regulation, and may reveal factors that can be
targeted to treat environmentally induced diseases such as cancer and neurological disorders. As such, our work
will exert a strong impact on environmental health research.
项目摘要/摘要
DNA中的双链断裂(DSB)可能是由于暴露在辐射和污染物中而引起的
环境。不准确的双链断裂修复可能导致基因组重排,从而导致智力
残疾、神经退化、免疫缺陷和癌症。DSB通过两条主要途径移除:
非同源末端连接(NHEJ)和同源重组(HR)依赖于不同的
这些因素在力学上是非常不同的。重要的是,DNA断裂也可以进行微同源-
介导末端连接(MMEJ),末端切除触发暴露的单链DNA尾部有限的同源性
DNA链退火以启动末端连接修复。MMEJ导致DNA序列缺失
在微同源区域之间。因此,MMEJ具有高度的突变性,是癌细胞的标志。
发现MMEJ具有专门的DNA聚合酶POLQ,并且它被频繁使用
即使当NHEJ和HR完好无损时,也支持MMEJ是进化上保守的DSB修复的前提
路径。
NHEJ和HR缺陷的肿瘤细胞在化疗后严重依赖MMEJ生存
DNA破坏剂。因此,MMEJ的失活会使肿瘤细胞对这种治疗敏感。一个主要目标
目前MMEJ研究的重点是确定调节或直接催化MMEJ的新因素,以定义基因
以及它们发挥作用的生化基础,并测试它们作为潜在可用药靶点的价值。我们
已经确定RTEL1是有效的MMEJ所需的一个新的因子。RTEL1编码了一个基本的Deah
能分解各种DNA结构的解旋酶,包括关键的重组中间体--置换
循环(D-LOOP)。我们假设RTEL1通过解离D-loop结构促进MMEJ
与MMEJ竞争。我们的模型解释了几个关于HR抑制作用的神秘观察
MMEJ中的因素,并为理解RTEL1相关的病理提供了一个机制框架
疾病。我们将使用分子遗传学和体外生物化学相结合的方法来测试这一创新想法。
该项目将更好地定义MMEJ的机制及其调节,并可能揭示可以
目标是治疗由环境引起的疾病,如癌症和神经疾病。因此,我们的工作
将对环境健康研究产生重大影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JAMES MATTHEW DALEY其他文献
JAMES MATTHEW DALEY的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JAMES MATTHEW DALEY', 18)}}的其他基金
The Role of Small RNAs in Homologous Recombination
小 RNA 在同源重组中的作用
- 批准号:
9167249 - 财政年份:2016
- 资助金额:
$ 23.25万 - 项目类别:
The Role of Small RNAs in Homologous Recombination
小 RNA 在同源重组中的作用
- 批准号:
9329413 - 财政年份:2016
- 资助金额:
$ 23.25万 - 项目类别:
相似海外基金
Novel Mechanisms of MED12-TGFbeta-mediated resistance to PARP Inhibitors in BRCA-deficient Cancer Cells
MED12-TGFbeta 介导的 BRCA 缺陷癌细胞对 PARP 抑制剂耐药的新机制
- 批准号:
10665588 - 财政年份:2022
- 资助金额:
$ 23.25万 - 项目类别:
Novel Mechanisms of MED12-TGFbeta-mediated resistance to PARP Inhibitors in BRCA-deficient Cancer Cells
MED12-TGFbeta 介导的 BRCA 缺陷癌细胞对 PARP 抑制剂耐药的新机制
- 批准号:
10536964 - 财政年份:2022
- 资助金额:
$ 23.25万 - 项目类别:
Carboplatin or Olaparib for BRcA deficient prostate cancer (COBRA)
卡铂或奥拉帕尼治疗 BRcA 缺陷型前列腺癌 (COBRA)
- 批准号:
10578711 - 财政年份:2020
- 资助金额:
$ 23.25万 - 项目类别:
Carboplatin or Olaparib for BRcA deficient prostate cancer (COBRA)
卡铂或奥拉帕尼治疗 BRcA 缺陷型前列腺癌 (COBRA)
- 批准号:
10417024 - 财政年份:2020
- 资助金额:
$ 23.25万 - 项目类别:
Metabolisms in BRCA-deficient and -proficient ovarian cancer as new therapeutic and diagnostic target.
BRCA 缺乏和丰富的卵巢癌的代谢作为新的治疗和诊断目标。
- 批准号:
18K09243 - 财政年份:2018
- 资助金额:
$ 23.25万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




