Optical interrogation of acid-sensing ion channel activation and desensitization through genetic code expansion
通过遗传密码扩展对酸敏感离子通道激活和脱敏进行光学询问
基本信息
- 批准号:10312523
- 负责人:
- 金额:$ 4.59万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-01 至 2022-07-15
- 项目状态:已结题
- 来源:
- 关键词:ASIC channelAcidosisAmino AcidsAreaAutomobile DrivingBindingBiological ModelsBiophysicsBrainCellsCerebral IschemiaCerebrumCommunicationCrystallizationDevelopmentDiseaseDrug DesignElectrophysiology (science)EnvironmentExtracellular DomainFamilyFellowshipFrightFundingFutureGenetic CodeGoalsGrowthIn VitroIndividualIon ChannelIon Channel GatingKineticsKnowledgeLeadLearningLinkMentorsMethodsModelingMolecularMolecular ConformationMovementMutagenesisNerve DegenerationNervous system structureNeuronsOpticsOutcomePainPaintParkinson DiseasePathologyPeptidesPeripheral Nervous SystemPermeabilityPharmacologyPhylogenetic AnalysisPhysiologicalPhysiologyPlayPositioning AttributeProcessProtein IsoformsProtonsPruritusReadingRegulationReportingResearchRestRoleRotationScientistSensory ProcessSideSiteSite-Directed MutagenesisSodiumSodium ChannelStretchingStructureSynaptic plasticityTechniquesTestingTimeToxinTrainingUniversitiesWritingalkalinitybasebeta pleated sheetbrain tissuecrosslinkdesensitizationextracellularin vivo Modelmolecular modelingoptogeneticspatch clampsensorskillstargeted treatmenttherapeutic targettoolvirtual
项目摘要
Project Summary This proposal will paint a clear picture of the molecular function of a unique family of proton-
sensitive ion channels, known as Acid-sensing ion channels (ASICs). Located primarily in the central and
peripheral nervous system, ASICs play a wide range of roles from synaptic plasticity to pain. In acidosis-related
CNS pathologies like cerebral ischemia, ASICs have been implicated in causing neurodegeneration. These
channels are activated by acidic shifts in extracellular pH below 7, where excess protons in solution bind the
large extracellular domain and allow for the pore to open. ASICs primarily reside in three states: 1. At
physiological or alkaline pH, the channel resides in an inactive resting state. 2. During mild acidification, the
channel reverts to a proton-bound, inactive conformation known as the desensitized state. 3. Upon initial heavy
acidification, the channel is in an open state, but over prolonged exposures, the channel desensitizes. While the
crystal structures of these states help illuminate potential changes in the channel between these state transitions,
experimental testing is required to functionally assess whether they are pertinent to channel gating. To elucidate
this, the two following specific aims will be employed. Aim 1 will determine conformational changes that are
necessary and sufficient for the mechanisms of activation using noncanonical amino acid incorporation to induce
optogenetic crosslinking and sidechain isomerization at regions that undergo large conformational changes and
test the functional consequences. Specifically, this aim will determine the contributions of the acidic pocket and
palm domain to activation. Aim 2 will evaluate the mechanism of β11-12 linker regulation of desensitization by
first understanding the role of Asp415, a residue within the linker, and its conformational consequences in
desensitization through the use site-directed mutagenesis and photocrosslinking. Further, we will investigate the
surrounding environment of the β11-12 linker by a phylogenetic comparison of ASIC isoforms and how this
environment can control the movement of the linker, which we have previously shown to control desensitization.
The outcomes of these two aims will fill the gaps in our knowledge for ASIC gating processes to allow for the
development of ASIC-targeted therapeutics. Furthermore, this study will lay the groundwork for optogenetic
modulation of ASICs through genetic code expansion. These tools will provide more precise control over the
channels activity in in vitro and in vivo model systems. The fellowship training plan that accompanies this
proposal will support my growth in reading, writing and communication skills to become a successful scientist.
Technically, the training plan acts as a guide to further enhance my electrophysiological skills, i.e. patch clamp,
and bolster my knowledge and skill in optogenetics, genetic code expansion and molecular modelling. The
University of Rochester and the Department of Pharmacology and Physiology is renowned for its ion channel
research, which provides the necessary facilities and mentoring required to complete my fellowship training plan.
项目概述这项提案将清楚地描绘出一种独特的质子家族的分子功能--
敏感离子通道,称为酸敏离子通道(ASIC)。主要位于中部和
在周围神经系统中,ASICs发挥着从突触可塑性到疼痛的广泛作用。与酸中毒相关
中枢神经系统的病理,如脑缺血,ASICs被认为与导致神经退行性变有关。这些
细胞外pH低于7的酸性变化激活了通道,其中溶液中过量的质子结合了
较大的胞外区域,并允许毛孔打开。ASIC主要驻留在三个状态:1.在
生理或碱性pH时,通道处于不活跃的休眠状态。2.在轻度酸化过程中,
通道回复到质子结合的、不活跃的构象,称为脱敏状态。3.在最初沉重的情况下
酸化时,通道处于打开状态,但长时间暴露后,通道会变得不敏感。而当
这些状态的晶体结构有助于照亮这些状态转变之间的通道中的潜在变化,
需要进行实验测试,以从功能上评估它们是否与通道选通有关。为了澄清
对此,将采用以下两个具体目标。目标1将确定以下构象变化
非规范氨基酸掺入诱导激活机制的充要条件
发生较大构象变化的区域的光生交联和侧链异构化
测试功能后果。具体地说,这一目标将确定酸性口袋和
掌上域激活。目的2评价β11-12接头调节脱敏的机制。
首先了解Asp415的作用,连接子中的残基,以及它在
通过使用定点诱变和光交联法脱敏。此外,我们将调查
通过ASIC11-12连接子亚型的系统发育比较研究β11-12连接子的周围环境
环境可以控制连接子的运动,我们之前已经证明了它可以控制脱敏。
这两个目标的结果将填补我们在ASIC门控工艺方面的知识空白,以允许
ASIC靶向疗法的发展。此外,本研究还将为光遗传学研究奠定基础。
通过遗传密码扩展对ASIC进行调制。这些工具将提供对
在体外和体内模型系统中的通道活性。随之而来的团契培训计划
提案将支持我在阅读、写作和沟通能力方面的增长,以成为一名成功的科学家。
从技术上讲,训练计划起到了指导作用,进一步提高了我的电生理技能,即膜片钳,
并增强了我在光遗传学、遗传密码扩展和分子建模方面的知识和技能。这个
罗切斯特大学药理学和生理学系以其离子通道而闻名
研究,它提供了完成我的团契培训计划所需的必要设施和指导。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Matthew L Rook其他文献
Matthew L Rook的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
肿瘤微环境因子Lactic acidosis在肿瘤细胞耐受葡萄糖剥夺中的作用机制研究
- 批准号:81301707
- 批准年份:2013
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Identification of factor to induce lactic acidosis in pre-metastatic niche
转移前微环境中诱导乳酸性酸中毒的因素的鉴定
- 批准号:
23K06620 - 财政年份:2023
- 资助金额:
$ 4.59万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Carbonic Anhydrase IX Acts as a Novel CO2/HCO3- Sensor and Protects the Pulmonary Endothelial Barrier from Acidosis
碳酸酐酶 IX 作为新型 CO2/HCO3- 传感器并保护肺内皮屏障免受酸中毒的影响
- 批准号:
10678442 - 财政年份:2023
- 资助金额:
$ 4.59万 - 项目类别:
Investigation based on both basic and clinical study about acidosis caused by piganide, SGLT2 inhibitor and surgical stress
皮甘尼、SGLT2抑制剂和手术应激引起的酸中毒的基础和临床研究
- 批准号:
23K08372 - 财政年份:2023
- 资助金额:
$ 4.59万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Role of proton-sensing G-protein-coupled receptors in the regulation of microglia and microvessel endothelial cell function in brain acidosis in a mouse ischemia reperfusion model.
质子感应 G 蛋白偶联受体在小鼠缺血再灌注模型脑酸中毒中调节小胶质细胞和微血管内皮细胞功能的作用。
- 批准号:
22K07342 - 财政年份:2022
- 资助金额:
$ 4.59万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Magnetic Resonance Fingerprinting of Tumor Vascular Perfusion and Acidosis
肿瘤血管灌注和酸中毒的磁共振指纹图谱
- 批准号:
10593285 - 财政年份:2022
- 资助金额:
$ 4.59万 - 项目类别:
Acidosis in pulmonary endothelial injury and repair
酸中毒与肺内皮损伤与修复
- 批准号:
10341493 - 财政年份:2022
- 资助金额:
$ 4.59万 - 项目类别:
Acidosis in pulmonary endothelial injury and repair
酸中毒与肺内皮损伤与修复
- 批准号:
10558528 - 财政年份:2022
- 资助金额:
$ 4.59万 - 项目类别:
Characterization of an abundant lactate-utilizing Campylobacter involved in mitigating rumen acidosis
参与减轻瘤胃酸中毒的丰富乳酸利用弯曲杆菌的表征
- 批准号:
557929-2021 - 财政年份:2022
- 资助金额:
$ 4.59万 - 项目类别:
Postgraduate Scholarships - Doctoral
Impact of metabolic acidosis on muscle mitochondrial energetics, metabolic health and physical endurance in persons with chronic kidney disease
代谢性酸中毒对慢性肾病患者肌肉线粒体能量学、代谢健康和身体耐力的影响
- 批准号:
10278747 - 财政年份:2021
- 资助金额:
$ 4.59万 - 项目类别:
Impact of metabolic acidosis on muscle mitochondrial energetics, metabolic health and physical endurance in persons with chronic kidney disease
代谢性酸中毒对慢性肾病患者肌肉线粒体能量学、代谢健康和身体耐力的影响
- 批准号:
10671682 - 财政年份:2021
- 资助金额:
$ 4.59万 - 项目类别: