Cortical interneuron subtypes adapt to signals from local pyramidal cells
皮质中间神经元亚型适应局部锥体细胞的信号
基本信息
- 批准号:10312853
- 负责人:
- 金额:$ 7.11万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-01 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:AffectAnatomyArchitectureBrainCell DeathCerebral cortexCognitionCollaborationsComplexCoupledCuesDataDevelopmentElectrophysiology (science)EpilepsyFellowshipFunctional disorderGenesGeneticGlutamatesGoalsHandIn Situ HybridizationInstructionInterneuron functionInterneuronsKnockout MiceKnowledgeLaboratoriesLogicMapsMeasuresMinority GroupsMolecularMorphologyMutant Strains MiceNatureNeurodevelopmental DisorderNeuronsNeurosciencesOutputPatternPlayPopulationPositioning AttributePropertyProteinsPyramidal CellsPyramidal TractsResearchRoleSchizophreniaSignal TransductionSliceSomatostatinStereotypingSynapsesTechniquesTestingTetanus ToxinTrainingVariantWorkautism spectrum disordercareerdesignexcitatory neuronexperimental studygenetic approachhippocampal pyramidal neuroninsightmigrationmouse geneticsnerve supplynervous system disorderpreventrabies viral tracingsingle-cell RNA sequencingtooltranscriptometranscriptomicsvesicular release
项目摘要
PROJECT SUMMARY
The incredible ability of the cerebral cortex to perform sophisticated computation, integration, and cognition relies
on the intricate building of its complex neuronal architecture. The cerebral cortex primarily consists of densely
packed excitatory neurons that are embellished with a small set of local inhibitory interneurons. Despite the small
number, cortical interneurons have astonishing diversity in their transcriptome, morphology, electrophysiological
property, and connectivity. A long-standing question is to understand how and why the diversity among cortical
interneurons is generated and needed. The goal of the proposal is to understand how the subtypes of cortical
interneurons adapt to the molecular identity of the excitatory neurons to which they pair to form specialized local
microcircuits. The central hypothesis of this proposal is that distinct subtypes of cortical interneurons partner with
different types of excitatory neurons. In other words, the composition and molecular identity of excitatory neurons
in different cortical regions govern the distribution and composition of cortical interneuron subtypes. The specific
aims will approach this hypothesis from two different angles. Using somatostatin-expressing cortical interneurons
as an example, In Aim 1 I use mouse genetic tools to target different transcriptomic subtypes of deep-layer
somatostatin interneurons to investigate their laminar distribution, morphology, and stereotyped local
microcircuitry. I will use both anatomical and functional measures to demonstrate the selective connectivity
towards different pyramidal neuron subtypes. In Aim 2, I utilize mutant mice in which the molecular identities of
a subset of excitatory neurons are altered. Using single-cell RNA sequencing of cortical interneurons, in
combination with in situ hybridization against marker genes for different somatostatin interneurons, I will
investigate the effects of altering excitatory neuron identity on the composition and identity of local interneurons.
Finally, in Aim 2 I test whether pyramidal neurons govern the survival of interneuron subtypes or guide
interneurons to specific subtypes through extrinsic cues. Substantial preliminary results are presented in the
research plan supporting the significance and feasibility of this proposal. The long-term objective of this work is
to identify the molecular mechanisms underlying the lock-and-key mechanisms between subtypes of excitatory
neurons and interneurons.
This fellowship will support the next stage of training in my path towards becoming an independent
neuroscientist. I aim to integrate the molecular neuroscience experimental techniques acquired during this
training period to my previous electrophysiological technical background, which will enable me to answer
scientific questions with multiple approaches. My long-term career goal is to conduct basic scientific research
that will advance our understanding of the wiring and function of the brain.
项目摘要
大脑皮层执行复杂计算、整合和认知的惊人能力依赖于
复杂的神经元结构的复杂构建。大脑皮层主要由密集的
密集的兴奋性神经元,点缀着一小部分局部抑制性中间神经元。虽小
皮质中间神经元在转录组、形态、电生理功能和神经元的功能上具有惊人的多样性。
属性和连通性。一个长期存在的问题是要了解大脑皮层神经元之间的差异是如何以及为什么的,
interneurons产生和需要。该提案的目标是了解皮质神经元的亚型
中间神经元适应兴奋性神经元的分子身份,它们与兴奋性神经元配对以形成专门的局部神经元。
微型电路这一提议的中心假设是,皮层中间神经元的不同亚型与
不同类型的兴奋性神经元。换句话说,兴奋性神经元的组成和分子特性
在不同的皮质区域支配皮质中间神经元亚型的分布和组成。具体
Aims将从两个不同的角度探讨这一假设。使用表达生长抑素的皮层中间神经元
作为一个例子,在目标1中,我使用小鼠遗传工具来靶向不同的深层转录组亚型,
生长抑素中间神经元,研究其层状分布,形态,和刻板的局部
微电路我将使用解剖学和功能测量来证明选择性连接
不同的锥体神经元亚型。在目标2中,我利用突变小鼠,其中
兴奋性神经元的子集被改变。使用皮层中间神经元的单细胞RNA测序,
结合对不同生长抑素中间神经元标记基因的原位杂交,我将
研究改变兴奋性神经元特性对局部中间神经元的组成和特性的影响。
最后,在目标2中,我测试锥体神经元是否支配中间神经元亚型的存活或指导
interneurons特定亚型通过外部线索。大量的初步结果在
研究计划支持这一建议的意义和可行性。这项工作的长期目标是
以确定兴奋性神经元亚型之间的锁和钥匙机制的分子机制,
神经元和中间神经元。
这个奖学金将支持下一阶段的培训,在我的道路上成为一个独立的
神经学家我的目标是整合在此期间获得的分子神经科学实验技术
培训期间,我以前的电生理技术背景,这将使我能够回答
用多种方法解决科学问题。我的长期职业目标是从事基础科研
这将促进我们对大脑线路和功能的理解。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jingjing Wu其他文献
Jingjing Wu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jingjing Wu', 18)}}的其他基金
Cortical interneuron subtypes adapt to signals from local pyramidal cells
皮质中间神经元亚型适应局部锥体细胞的信号
- 批准号:
10655512 - 财政年份:2021
- 资助金额:
$ 7.11万 - 项目类别:
Cortical interneuron subtypes adapt to signals from local pyramidal cells
皮质中间神经元亚型适应局部锥体细胞的信号
- 批准号:
10474308 - 财政年份:2021
- 资助金额:
$ 7.11万 - 项目类别:
相似海外基金
Linking Epidermis and Mesophyll Signalling. Anatomy and Impact in Photosynthesis.
连接表皮和叶肉信号传导。
- 批准号:
EP/Z000882/1 - 财政年份:2024
- 资助金额:
$ 7.11万 - 项目类别:
Fellowship
Digging Deeper with AI: Canada-UK-US Partnership for Next-generation Plant Root Anatomy Segmentation
利用人工智能进行更深入的挖掘:加拿大、英国、美国合作开发下一代植物根部解剖分割
- 批准号:
BB/Y513908/1 - 财政年份:2024
- 资助金额:
$ 7.11万 - 项目类别:
Research Grant
Doctoral Dissertation Research: Social and ecological influences on brain anatomy
博士论文研究:社会和生态对大脑解剖学的影响
- 批准号:
2235348 - 财政年份:2023
- 资助金额:
$ 7.11万 - 项目类别:
Standard Grant
Simultaneous development of direct-view and video laryngoscopes based on the anatomy and physiology of the newborn
根据新生儿解剖生理同步开发直视喉镜和视频喉镜
- 批准号:
23K11917 - 财政年份:2023
- 资助金额:
$ 7.11万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Computational comparative anatomy: Translating between species in neuroscience
计算比较解剖学:神经科学中物种之间的翻译
- 批准号:
BB/X013227/1 - 财政年份:2023
- 资助金额:
$ 7.11万 - 项目类别:
Research Grant
computational models and analysis of the retinal anatomy and potentially physiology
视网膜解剖学和潜在生理学的计算模型和分析
- 批准号:
2825967 - 财政年份:2023
- 资助金额:
$ 7.11万 - 项目类别:
Studentship
Genetics of Extreme Phenotypes of OSA and Associated Upper Airway Anatomy
OSA 极端表型的遗传学及相关上呼吸道解剖学
- 批准号:
10555809 - 财政年份:2023
- 资助金额:
$ 7.11万 - 项目类别:
Development of a novel visualization, labeling, communication and tracking engine for human anatomy.
开发一种新颖的人体解剖学可视化、标签、通信和跟踪引擎。
- 批准号:
10761060 - 财政年份:2023
- 资助金额:
$ 7.11万 - 项目类别:
Understanding the functional anatomy of nociceptive spinal output neurons
了解伤害性脊髓输出神经元的功能解剖结构
- 批准号:
10751126 - 财政年份:2023
- 资助金额:
$ 7.11万 - 项目类别:
The Anatomy of Online Reviews: Evidence from the Steam Store
在线评论剖析:来自 Steam 商店的证据
- 批准号:
2872725 - 财政年份:2023
- 资助金额:
$ 7.11万 - 项目类别:
Studentship