A holistic approach to monitoring, measuring, and facilitating engagement among ALF residents
监测、衡量和促进 ALF 居民参与的整体方法
基本信息
- 批准号:10324934
- 负责人:
- 金额:$ 28.86万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-30 至 2023-03-29
- 项目状态:已结题
- 来源:
- 关键词:Activities of Daily LivingAlgorithmsAssisted Living FacilitiesBedsBehaviorBusinessesCaringClinical assessmentsCognitiveCollaborationsCommunitiesComputer softwareDataDevelopmentElderlyEngineeringEnsureFamilyFamily memberFeedbackFocus GroupsFoundationsFreedomFutureGoalsGroup InterviewsHealthHealth PromotionHealth care facilityHealth systemHomeIllinoisIndianaIndividualLeadLeisure ActivitiesLeisuresLonelinessMeasuresMental DepressionMethodsMonitorMovementOutcomeParticipantPatient Self-ReportPatternPersonal SatisfactionPhaseQuality of lifeReportingResearchSecureSmall Business Innovation Research GrantSocial InteractionSocial isolationSystemTabletsTechnologyTherapeuticTimeWomanbasecare providersclinically significantcommunity livingdata exchangedesigndigital healthexperiencefunctional declineholistic approachimprovedinsightinterestloved onesnegative affectneuropsychiatric symptomneuropsychiatryphase 1 studypredictive modelingpsychologicpsychosocialsocialsocial engagementtoolusabilitywearable devicewearable sensor technology
项目摘要
Project Abstract
Older adults residing in assisted living facilities (ALF) have been known to experience high levels of
psychological problems (e.g., social isolation, loneliness, and depression) and cognitive functional decline. By
participating in a variety of leisure activities (defined here as individual and social activities in which participants
engage with freedom of choice and have a personally meaningful experience), ALF residents can reduce
negative psychosocial problems and concerns, promote positive social interactions with others, and enhance
overall health quality. During activities, ALF staff generally lead the activity, monitor resident engagement, and
provide a report on whether the engagement reached a “meaningful” level or not. The problem is that defining
“meaningful engagement” is highly subjective and must be evaluated against each resident’s individual goals—
requiring an extensive amount of staff time. A higher quality, less time intensive, and more reliable method for
monitoring, measuring and facilitating engagement is needed to ensure residents receive the greatest overall
benefits from leisure and social activities. A growing body of evidence demonstrates that wearable sensors and
technology can be utilized to detect an individual’s daily activity and behaviors. These studies lay the
foundation for the establishment of the Appraise to Assist (A2A) system. The proposed A2A system will be
developed by integrating two existing technologies—both designed specifically to meet the needs of older
adults—CareBand (a wearable device developed by CareBand, Inc.) and RememberStuff (an interactive
tablet-based platform developed by Eperture LLC). Led by CareBand, this SBIR proposes to develop A2A to
passively monitor, empirically measure and unobtrusively facilitate engagement among residents to
quantitatively and holistically measure leisure and social engagement. The overall objective is to engineer an
A2A system that will quantify leisure engagement and social interactions of individuals residing in ALF that is
statistically significant, feasible, usable and acceptable by residents, families, and staff. Phase I Aims are: 1)
Conduct focus groups and interviews with residents, families, and facility staff of ALFs to gain deeper
understanding of market requirements and use cases for the integrated technology; 2) Establish a secure
integration between CareBand and RememberStuff to allow reciprocal data exchange and to create reports for
staff, family, and residents; and 3) Conduct feasibility and usability study among 15 potential end users in an
ALF. At the end of Phase I, CareBand and R/S will have implemented the technology in an ALF, received user
feedback on the hardware and software capable of measuring leisure engagement, and assessed correlation
of engagement data (collected by RememberStuff) with the quantitative movement data (collected by the
CareBand). Phase II will focus on the construction of feedback algorithms to passively and automatically
measure leisure engagement informed by findings of correlation, the creation of a predictive model around
facilitating future engagement based on patterns and goals, and the assessment of clinical significance.
项目摘要
据了解,居住在辅助生活设施 (ALF) 中的老年人会经历高水平的
心理问题(例如,社会孤立、孤独和抑郁)和认知功能下降。经过
参加各种休闲活动(此处定义为参与者的个人和社会活动)
参与选择的自由并获得对个人有意义的体验),ALF 居民可以减少
消极的社会心理问题和担忧,促进与他人的积极社会互动,并增强
整体健康素质。在活动期间,ALF 工作人员通常领导活动、监控居民参与度并
提供一份关于参与度是否达到“有意义”水平的报告。问题在于定义
“有意义的参与”是非常主观的,必须根据每个居民的个人目标进行评估——
需要工作人员大量的时间。更高质量、更少时间密集且更可靠的方法
需要监测、衡量和促进参与,以确保居民获得最大的总体收益
从休闲和社交活动中受益。越来越多的证据表明,可穿戴传感器和
技术可用于检测个人的日常活动和行为。这些研究奠定了
为建立评估协助(A2A)系统奠定了基础。拟议的 A2A 系统将是
通过整合两种现有技术而开发——两者都是专门为满足老年人的需求而设计的
成人 — CareBand(CareBand, Inc. 开发的可穿戴设备)和 RememberStuff(交互式
由 Eperture LLC 开发的基于平板电脑的平台)。在 CareBand 的领导下,该 SBIR 提议开发 A2A
被动监测、凭经验测量并低调地促进居民参与
定量和全面地衡量休闲和社交参与度。总体目标是设计一个
A2A 系统将量化居住在 ALF 中的个人的休闲参与和社交互动,即
统计上显着、可行、可用且为居民、家庭和工作人员所接受。第一阶段的目标是:1)
开展焦点小组并对 ALF 的居民、家庭和设施工作人员进行访谈,以深入了解
了解集成技术的市场需求和用例; 2)建立安全的
CareBand 和 RememberStuff 之间的集成,允许相互数据交换并创建报告
工作人员、家人和居民; 3) 对 15 个潜在最终用户进行可行性和可用性研究
阿尔法。在第一阶段结束时,CareBand 和 R/S 将在 ALF 中实施该技术,接收用户
对能够衡量休闲参与度的硬件和软件的反馈,并评估相关性
参与度数据(由 RememberStuff 收集)与定量运动数据(由
护理带)。第二阶段将重点关注反馈算法的构建,以被动地、自动地
通过相关性发现来衡量休闲参与度,围绕相关问题创建预测模型
根据模式和目标以及临床意义的评估促进未来的参与。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Adam Russek-Sobol其他文献
Adam Russek-Sobol的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 28.86万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 28.86万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 28.86万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 28.86万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 28.86万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 28.86万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 28.86万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 28.86万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 28.86万 - 项目类别:
Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 28.86万 - 项目类别:
Research Grant














{{item.name}}会员




