Optimization of a Novel Thread Geometry for Various Orthopedic Surgery Applications
适用于各种骨科手术应用的新型螺纹几何形状的优化
基本信息
- 批准号:10324164
- 负责人:
- 金额:$ 110.44万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-20 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:Activities of Daily LivingAnatomyAnimal ModelAnimalsArchitectureAreaBone ScrewsBusinessesCase SeriesClinicalClinical ResearchDataData ElementDefectDevelopmentEducationElementsEquipmentFaceFailureFatigueFinite Element AnalysisFractureFutureGeometryGoalsHealthcare SystemsHistologyHumanImageImplantIsraelLeadLifeManufacturer NameMechanicsMedical centerMethodologyMethodsModelingOrthopedic SurgeryOrthopedicsOsseointegrationOsteoporoticOutcomeOutsourcingPatient CarePatientsPerformancePhasePostoperative ComplicationsProcessProductionRadialResistanceResolutionRiskSheepSmall Business Innovation Research GrantSourceStressStudy modelsSurfaceTechnologyTestingTimeTorqueTranslatingTrauma patientWeight-Bearing stateWidthX-Ray Computed Tomographyaustinbasebonebone geometrybone preservationbone qualityclinical applicationcommercializationcostcost effectivecost effectivenessdesignefficacy evaluationhealingimprovedinnovationlong bonenovelosteoporotic bonepreventprototyperesearch and developmentsafety and feasibilitysample fixationsuccesstool
项目摘要
PROJECT SUMMARY/ABSTRACT
The majority of threaded interfaces (screws) used in orthopaedics utilize a buttress thread design which has
limitations in clinical application. Clinically, orthopaedic screws must resist the dynamic forces generated during
common activities of daily living, yet buttress screws are not designed to resist multidirectional force, leading to
increased risk of postoperative complications including screw loosening and failure of fixation. Since the
modifiable variables of buttress screw designs—including thread pitch, depth, width and face angle—are
interrelated, attempts to improve screw functionality by altering these variables is limited. The challenge in bone
threaded surface interface is in the optimization of threaded surfaces that meet the loading scenarios at different
anatomic sites with varying bone stock, more often than not, one of poor bone quality.
The development of innovative bone-screw-fastener technologies for the field of orthopaedic surgery is the
underlying focus of OsteoCentric, Inc., a small business based in Austin, TX. The company has designed,
manufactured and implemented a new bone-screw-fastener design, the Bone Interlocking Thread Geometry
(BITG), based on a technology that creates a circumferential interlocking interface that maximizes bone volume
and preserves bone architecture. The BITG overcomes many of the limitations of buttress screws by resisting
multidirectional forces and bending moments, minimizing radial forces, and allowing for higher finishing torques.
These enhancements can prevent fixation construct failure especially with cases with inadequate bone quality.
We have successfully developed and validated bone-thread-interface Finite Element (FE) models for three
loading conditions and have conducted a parametric FE analysis to optimize the BITG thread pitch geometry.
The SBIR Phase II proposal seeks to build on our early success by optimizing the thread geometry; testing it in
a large animal model; and optimizing the BITG thread manufacturing methodology. This will enable OsteoCentric
to market a clinically superior product that reduces the overall cost of implants to the healthcare system by
utilizing more cost-effective non-locking screws and plates. The specific aims of the Phase II are: Specific Aim
1: Conduct a comprehensive parametric analysis of the BITG using validated FE analysis to optimize cortical
and cancellous thread geometry for normal and osteoporotic bones. Specific Aim 2: Optimize methods of BITG
manufacturing to enhance cost-effectiveness and efficiency; build internal prototyping and manufacturing
expertise; and build an education package for outsource production manufacturers to streamline BITG
technology production. Specific Aim 3: Test the optimized BITG thread design against traditional buttress screw
using an ovine fracture model in both normal and osteoporotic conditions.
项目总结/摘要
骨科中使用的大多数螺纹接口(螺钉)采用锯齿螺纹设计,
临床应用的局限性。在临床上,骨科螺钉必须抵抗在植入过程中产生的动态力。
日常生活的常见活动,但支撑螺钉的设计不能抵抗多方向力,导致
术后并发症风险增加,包括螺钉松动和固定失败。以来
支撑螺钉设计的可修改变量,包括螺距、深度、宽度和面角,
由于这些变量是相互关联的,因此通过改变这些变量来改善螺钉功能的尝试是有限的。骨头的挑战
螺纹表面接口是在螺纹表面的优化,满足不同的负载情况下,
解剖部位骨量不同,通常骨质较差。
骨科手术领域创新骨螺钉紧固件技术的发展是
OsteoCentric,Inc.的基本重点,一家位于德克萨斯州奥斯汀的小企业。该公司设计,
制造并实施了一种新的骨螺钉紧固件设计,即骨互锁螺纹几何形状
(BITG),基于一种创建周向互锁界面的技术,可最大限度地增加骨量
并保留了骨骼结构。BITG克服了支撑螺钉的许多局限性,
多方向力和弯曲力矩,最大限度地减少径向力,并允许更高的精加工扭矩。
这些增强可以防止固定结构失效,特别是对于骨质不足的病例。
我们已经成功开发并验证了三种骨螺纹界面有限元(FE)模型
载荷条件下,并进行了参数有限元分析,以优化BITG螺距几何形状。
SBIR第二阶段提案旨在通过优化螺纹几何形状,
大型动物模型;以及优化BITG线制造方法。这将使OsteoCentric
销售临床上上级的产品,该产品通过以下方式降低医疗保健系统的植入物的总成本
使用更具成本效益的非锁定螺钉和接骨板。第二阶段的具体目标是:
1:使用经验证的FE分析对BITG进行全面的参数分析,以优化皮质骨
和松质骨螺纹几何形状。具体目标2:优化BITG方法
制造,以提高成本效益和效率;建立内部原型和制造
专业知识;并为外包生产制造商建立教育包,以简化BITG
技术生产。具体目标3:针对传统支撑螺钉测试优化的BITG螺纹设计
使用正常和非正常条件下的绵羊骨折模型。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andrew Ray Fauth其他文献
Andrew Ray Fauth的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andrew Ray Fauth', 18)}}的其他基金
Optimization of a Novel Thread Geometry for Various Orthopedic Surgery Applications
适用于各种骨科手术应用的新型螺纹几何形状的优化
- 批准号:
10491290 - 财政年份:2021
- 资助金额:
$ 110.44万 - 项目类别:
相似海外基金
Linking Epidermis and Mesophyll Signalling. Anatomy and Impact in Photosynthesis.
连接表皮和叶肉信号传导。
- 批准号:
EP/Z000882/1 - 财政年份:2024
- 资助金额:
$ 110.44万 - 项目类别:
Fellowship
Digging Deeper with AI: Canada-UK-US Partnership for Next-generation Plant Root Anatomy Segmentation
利用人工智能进行更深入的挖掘:加拿大、英国、美国合作开发下一代植物根部解剖分割
- 批准号:
BB/Y513908/1 - 财政年份:2024
- 资助金额:
$ 110.44万 - 项目类别:
Research Grant
Simultaneous development of direct-view and video laryngoscopes based on the anatomy and physiology of the newborn
根据新生儿解剖生理同步开发直视喉镜和视频喉镜
- 批准号:
23K11917 - 财政年份:2023
- 资助金额:
$ 110.44万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Genetics of Extreme Phenotypes of OSA and Associated Upper Airway Anatomy
OSA 极端表型的遗传学及相关上呼吸道解剖学
- 批准号:
10555809 - 财政年份:2023
- 资助金额:
$ 110.44万 - 项目类别:
computational models and analysis of the retinal anatomy and potentially physiology
视网膜解剖学和潜在生理学的计算模型和分析
- 批准号:
2825967 - 财政年份:2023
- 资助金额:
$ 110.44万 - 项目类别:
Studentship
Computational comparative anatomy: Translating between species in neuroscience
计算比较解剖学:神经科学中物种之间的翻译
- 批准号:
BB/X013227/1 - 财政年份:2023
- 资助金额:
$ 110.44万 - 项目类别:
Research Grant
Doctoral Dissertation Research: Social and ecological influences on brain anatomy
博士论文研究:社会和生态对大脑解剖学的影响
- 批准号:
2235348 - 财政年份:2023
- 资助金额:
$ 110.44万 - 项目类别:
Standard Grant
Development of a novel visualization, labeling, communication and tracking engine for human anatomy.
开发一种新颖的人体解剖学可视化、标签、通信和跟踪引擎。
- 批准号:
10761060 - 财政年份:2023
- 资助金额:
$ 110.44万 - 项目类别:
Understanding the functional anatomy of nociceptive spinal output neurons
了解伤害性脊髓输出神经元的功能解剖结构
- 批准号:
10751126 - 财政年份:2023
- 资助金额:
$ 110.44万 - 项目类别:
Anatomy and functions of LTP interactomes and their relationship to small RNA signals in systemic acquired resistance
LTP相互作用组的解剖和功能及其与系统获得性耐药中小RNA信号的关系
- 批准号:
BB/X013049/1 - 财政年份:2023
- 资助金额:
$ 110.44万 - 项目类别:
Research Grant














{{item.name}}会员




