Ultra-high sensitivity, high spatial resolution single photon emission tomography using mechanical flux manipulation.
使用机械通量控制的超高灵敏度、高空间分辨率单光子发射断层扫描。
基本信息
- 批准号:10323609
- 负责人:
- 金额:$ 25.19万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-15 至 2023-09-14
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAbbreviationsAlgorithmsBrainBrain imagingCardiacClinicalCodeCollimatorComputer softwareCoupledCrystallizationDataDetectionDimensionsElectronicsElementsEmission-Computed TomographyEventFundingGeometryGlossaryGoalsHumanImageImaging TechniquesImaging technologyIndividualMathematicsMechanicsMethodologyMonte Carlo MethodMotionMotorNoisePatientsPatternPenetrationPerformancePhasePhotonsPhysicsPositron-Emission TomographyProbabilityProcessProtocols documentationRadioactiveRadioisotopesRadionuclide ImagingRecordsResearchResidual stateResolutionResourcesRunningSoftware ToolsSpeedSystemThree-Dimensional ImageTimeTranslationsTravelWidthabsorptionattenuationcomputing resourcescontrast imagingcostdata acquisitiondesigndetectordigitalimage reconstructionimaging detectorimaging systemnovelprototypequantitative imagingreconstructionresponsesensorsimulationsingle photon emission computed tomographytomographytoolwhole body imaging
项目摘要
The goal of this project is to develop both hardware and software to demonstrate the ground breaking capabilities
of a new single photon radionuclide (SPR) imaging technique with the potential for >1000 times gain in sensitivity
and >100 times gain in volumetric spatial resolution compared to clinical SPECT imaging using parallel-hole
collimators. We refer to our new imaging methodology as mechanical flux manipulation (MFM). MFM utilizes
high resolution pixelated detectors, high bandwidth data acquisition electronics and a novel image reconstruction
methodology utilizing detector flux information to achieve target performance goals of >50% detection efficiency
for photons impinging an MFM detector and <2 mm reconstructed image resolution. MFM is a SPR tomographic
imaging technique. The two main features that differentiate MFM from traditional SPECT are collimator-less
detectors and the use of flux-probability distributions versus line of response (LOR) counts to reconstruct images.
MFM rejects the notion that the direction of every detected photon must be known in order to accurately
reconstruct images from a single photon radionuclide emitting object. Instead, MFM collects flux information on
a crystal by crystal basis and records how the flux to each crystal is altered by moving a mechanical attenuator
(MA) between the emission object and the detector. Using flux information, the incident direction of each detected
photon is not required for image reconstruction. MFM is further differentiated from SPECT in that it uses fully 3D
image reconstruction rather than stacks of 2D data. While MFM will support general single photon tomographic
imaging protocols, the focus of this Phase I proposal is to demonstrate feasibility for human brain imaging.
This project is consists of three specific aims. The first aim is to extend and validate the SimSET Monte Carlo
simulation tool to simulate an MFM scanner including real-world effects. The main component of this extension
is to be able to simulate continuous MA motion. An additional sub-aim is to fabricate a prototype MA assembly
and fully functional pixelated detector panel to collect experimental data with which to validate the SimSET Monte
Carlo software tools. The second aim of the project is to expand the MFM image reconstruction software to 3D
and to incorporate all corrections to support quantitative imaging. Extending to fully 3D image reconstruction will
require significantly more computing resources and optimization of the algorithms so that the code can run
efficiently. One of the sub-aims is to implement the reconstruction software using GPU processors. The third aim
is to use the validated Monte Carlo tools from specific aim 1 and the fully 3D image reconstruction code
developed in aim 2 to optimize the design of a MFM imaging system for high resolution human brain imaging.
After successful completion of this project, we will seek additional funding to build a prototype MFM system to
support <2mm image resolution human brain imaging system using clinically feasible protocols.
该项目的目标是开发硬件和软件,以展示突破性的能力
一种新的单光子放射性核素(SPR)成像技术,其灵敏度可能提高1000倍以上
与使用平行孔的临床SPECT成像相比,体积空间分辨率增益>100倍
准直器我们将我们的新成像方法称为机械通量操纵(MFM)。MFM利用
高分辨率像素化探测器、高带宽数据采集电子设备和新型图像重建
利用探测器通量信息实现探测效率>50%的目标性能目标的方法
对于撞击MFM探测器的光子和<2 mm的重建图像分辨率。MFM是SPR断层成像
成像技术MFM区别于传统SPECT的两个主要特征是无准直器
检测器和使用通量概率分布与响应线(LOR)计数来重建图像。
MFM拒绝了这样一种观念,即必须知道每个探测到的光子的方向,才能准确地识别出它们。
从单光子放射性核素发射对象重建图像。相反,MFM收集通量信息,
逐晶体基础记录每个晶体的通量如何通过移动机械衰减器而改变
(MA)在发射物体和探测器之间。利用磁通量信息,
图像重建不需要光子。MFM与SPECT的进一步区别在于它使用完全3D
图像重建而不是2D数据的堆叠。而MFM将支持一般的单光子断层成像
成像协议,第一阶段提案的重点是证明人脑成像的可行性。
该项目包括三个具体目标。第一个目标是扩展和验证SimSET Monte Carlo
模拟工具,用于模拟MFM扫描仪,包括真实世界的效果。此扩展的主要组成部分
是能够模拟连续的MA运动。另一个子目标是制造一个原型MA组件
和功能齐全的像素化探测器面板,用于收集实验数据,以验证SimSET Monte
Carlo软件工具。该项目的第二个目标是将MFM图像重建软件扩展到3D
并结合所有校正以支持定量成像。扩展到全3D图像重建将
需要更多的计算资源和算法优化,以便代码可以运行
有效地其中一个子目标是使用GPU处理器实现重建软件。第三个目标
是使用特定目标1中经过验证的Monte Carlo工具和全3D图像重建代码
在目标2中开发了用于优化用于高分辨率人脑成像的MFM成像系统的设计。
在这项计划成功完成后,我们会寻求额外拨款,以建立一个MFM系统的原型,
支持使用临床可行协议的<2mm图像分辨率人脑成像系统。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Larry Pierce其他文献
Larry Pierce的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Larry Pierce', 18)}}的其他基金
Development of wearable technology to enable therapy personalization of 177Lu DOTATATE for neuroendocrine tumors
开发可穿戴技术,实现 177Lu DOTATATE 神经内分泌肿瘤治疗的个性化
- 批准号:
10010282 - 财政年份:2020
- 资助金额:
$ 25.19万 - 项目类别:
Development of wearable technology to enable therapy personalization of 177Lu DOTATATE for neuroendocrine tumors
开发可穿戴技术,实现 177Lu DOTATATE 神经内分泌肿瘤治疗的个性化
- 批准号:
10223248 - 财政年份:2020
- 资助金额:
$ 25.19万 - 项目类别:
相似海外基金
Real-time Disambiguation of Abbreviations in Clinical Notes
临床记录中缩写词的实时消歧
- 批准号:
8077875 - 财政年份:2010
- 资助金额:
$ 25.19万 - 项目类别:
Real-time Disambiguation of Abbreviations in Clinical Notes
临床记录中缩写词的实时消歧
- 批准号:
7866149 - 财政年份:2010
- 资助金额:
$ 25.19万 - 项目类别:
Real-time Disambiguation of Abbreviations in Clinical Notes
临床记录中缩写词的实时消歧
- 批准号:
8589822 - 财政年份:2010
- 资助金额:
$ 25.19万 - 项目类别:
Real-time Disambiguation of Abbreviations in Clinical Notes
临床记录中缩写词的实时消歧
- 批准号:
8305149 - 财政年份:2010
- 资助金额:
$ 25.19万 - 项目类别:














{{item.name}}会员




