Cell envelope stress responses and the mechanism of antibiotic tolerance in Gram-negative pathogens
革兰氏阴性病原体的细胞包膜应激反应和抗生素耐受机制
基本信息
- 批准号:10322030
- 负责人:
- 金额:$ 39.2万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-01-10 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:Acinetobacter baumanniiAdjuvantAftercareAnimal ModelAnti-Bacterial AgentsAntibiotic ResistanceAntibiotic TherapyAntibioticsBacteriaBiochemicalBiological ModelsCell ShapeCell WallCell membraneCellsCholeraClinicalClinical TreatmentComplexDataData SetDevelopmentDown-RegulationDrug TargetingEnterobacter cloacaeExcisionExhibitsExposure toGenesGeneticGoalsGram-Negative BacteriaHaemophilus influenzaeHomeostasisIn VitroIndividualInfectionIronKnowledgeLipidsMaintenanceMeasuresMediatingMembraneMetabolicMetalsMicrobeModelingModern MedicineMonobactamsNormal CellPathway interactionsPenicillinsPharmaceutical PreparationsPhospholipidsPopulationPseudomonas aeruginosaRecoveryRegulonResistanceResolutionRoleShapesSignal InductionSignal TransductionStressSuperoxide DismutaseSystemTestingTranslatingTreatment FailureUp-RegulationVibrio choleraeWithdrawalantibiotic designantibiotic toleranceantimicrobialbactericidebeta-Lactamsbiological adaptation to stresscandidate identificationcell envelopecell motilityclinical practicedesignexperimental studyin vivoinsightmembermembrane synthesisnovelpathogenprotein-histidine kinaserapid growthrecurrent infectionrepairedresponsetranscriptome sequencing
项目摘要
Project Summary
Bacteria often resist killing by normally bactericidal antibiotics, resulting in clinical treatment failure and the
development of antibiotic resistance. The ability to survive damage elicited by exposure to antibiotics is termed
tolerance. Tolerance is likely responsible for the recurrence of infections after discontinuation of antimicrobial
therapy, and provides a reservoir of a bacterial population that can develop full scale resistance. An extreme
case of tolerance is the formation of persister cells, which do not experience antibiotic-induced damage due to
dormancy. However, we and others have found that many Gram-negative pathogens (Vibrio cholerae,
Pseudomonas aeruginosa, Enterobacter cloacae, Haemophilus influenzae and Acinetobacter baumannii) are
fully susceptible to damage induced by cell wall acting antibiotics (beta lactams), but yet survive at very high
levels. Survival is enabled through the formation of viable spheres that are devoid of detectable cell wall
material and that recover to normal shape upon withdrawal of the antibiotic. In our model organism, the cholera
pathogen V. cholerae, tolerance is promoted by cell envelope stress responses, especially the two-component
system WigKR. WigKR is induced by cell wall acting antibiotics and mounts a complex response that ultimately
enables recovery from the spherical state. This response includes upregulation of cell wall synthesis functions,
outer membrane synthesis, phospholipid synthesis and downregulation of motility and iron acquisition genes.
How this response promotes tolerance is poorly understood, and so are the mechanisms of tolerance in other
Gram-negative bacteria. Here, we aim to interrogate V. cholerae's cell envelope stress responses and their
relationship with beta lactam tolerance and post-antibiotic recovery. Using genetic and biochemical
approaches, we will find the elusive induction signal sensed by the histidine kinase WigK. Leveraging
extensive datasets comprehensively describing the WigKR regulon, we will measure each individual regulon
member's contribution to beta lactam tolerance. Lastly, we will apply what we have learned in the V. cholerae
model to other Gram-negative pathogens exhibiting high beta lactam tolerance, specifically E. cloacae and P.
aeruginosa. Our experiments will yield novel insight into the mechanisms of antibiotic tolerance and result in
the identification of candidate drug targets for anti-tolerance adjuvants of beta lactams.
项目摘要
细菌通常抵抗通常杀菌抗生素的杀灭,导致临床治疗失败,
抗生素耐药性的发展。在暴露于抗生素引起的损伤中存活的能力被称为
宽容耐受性可能是导致停用抗生素后感染复发的原因
治疗,并提供了一个水库的细菌种群,可以发展全面的阻力。一个极端
耐受性的一个例子是形成持留细胞,这些细胞不会经历由以下原因引起的过敏性损伤:
休眠然而,我们和其他人已经发现许多革兰氏阴性病原体(霍乱弧菌,
铜绿假单胞菌、阴沟肠杆菌、流感嗜血杆菌和鲍曼不动杆菌)是
对细胞壁作用抗生素(β-内酰胺类)诱导的损伤完全敏感,但在极高的温度下仍能存活
程度.通过形成缺乏可检测的细胞壁的活球,
在撤回抗生素后恢复到正常形状。在我们的模式生物中,
病原菌霍乱弧菌,耐受性是由细胞膜应激反应,特别是双组分
系统WigKR。WigKR是由细胞壁作用抗生素诱导的,并产生一种复杂的反应,
能够从球形状态恢复。这种反应包括细胞壁合成功能的上调,
外膜合成、磷脂合成以及运动和铁获得基因的下调。
人们对这种反应如何促进耐受性知之甚少,其他免疫反应中的耐受机制也是如此。
革兰氏阴性菌。在这里,我们的目的是询问霍乱弧菌的细胞包膜应激反应和它们的免疫反应。
与β内酰胺耐受性和抗生素后恢复的关系。利用基因和生化技术
方法,我们将发现由组氨酸激酶WigK感知的难以捉摸的诱导信号。利用
广泛的数据集全面描述WigKR调节子,我们将测量每个单独的调节子
成员对β内酰胺耐受性的贡献。最后,我们将应用我们在V. cholesterol中所学到的知识,
对其他表现出高β内酰胺耐受性的革兰氏阴性病原体,特别是E. cloxacin和P.
铜绿。我们的实验将对抗生素耐受性的机制产生新的见解,并导致
β-内酰胺类抗耐受佐剂候选药物靶点的鉴定。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Tobias Doerr其他文献
Tobias Doerr的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Tobias Doerr', 18)}}的其他基金
Cell envelope stress responses and the mechanism of antibiotic tolerance in Gram-negative pathogens
革兰氏阴性病原体的细胞包膜应激反应和抗生素耐受机制
- 批准号:
10543069 - 财政年份:2019
- 资助金额:
$ 39.2万 - 项目类别:
The mechanism of autolysin regulation in Vibrio cholerae
霍乱弧菌自溶素调节机制
- 批准号:
10463655 - 财政年份:2019
- 资助金额:
$ 39.2万 - 项目类别:
The mechanism of autolysin regulation in Vibrio cholerae
霍乱弧菌自溶素调节机制
- 批准号:
9762289 - 财政年份:2019
- 资助金额:
$ 39.2万 - 项目类别:
The mechanism of autolysin regulation in Vibrio cholerae
霍乱弧菌自溶素调节机制
- 批准号:
10238099 - 财政年份:2019
- 资助金额:
$ 39.2万 - 项目类别:
The mechanism of autolysin regulation in Vibrio cholerae
霍乱弧菌自溶素调节机制
- 批准号:
10000951 - 财政年份:2019
- 资助金额:
$ 39.2万 - 项目类别:
Cell envelope stress responses and the mechanism of antibiotic tolerance in Gram-negative pathogens
革兰氏阴性病原体的细胞包膜应激反应和抗生素耐受机制
- 批准号:
10078589 - 财政年份:2019
- 资助金额:
$ 39.2万 - 项目类别:
相似海外基金
Metachronous synergistic effects of preoperative viral therapy and postoperative adjuvant immunotherapy via long-term antitumor immunity
术前病毒治疗和术后辅助免疫治疗通过长期抗肿瘤免疫产生异时协同效应
- 批准号:
23K08213 - 财政年份:2023
- 资助金额:
$ 39.2万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Improving the therapeutic immunity of cancer vaccine with multi-adjuvant polymeric nanoparticles
多佐剂聚合物纳米粒子提高癌症疫苗的治疗免疫力
- 批准号:
2881726 - 财政年份:2023
- 资助金额:
$ 39.2万 - 项目类别:
Studentship
Countering sympathetic vasoconstriction during skeletal muscle exercise as an adjuvant therapy for DMD
骨骼肌运动期间对抗交感血管收缩作为 DMD 的辅助治疗
- 批准号:
10735090 - 财政年份:2023
- 资助金额:
$ 39.2万 - 项目类别:
Evaluation of the Sensitivity to Endocrine Therapy (SET ER/PR) Assay to predict benefit from extended duration of adjuvant endocrine therapy in the NSABP B-42 trial
NSABP B-42 试验中内分泌治疗敏感性 (SET ER/PR) 测定的评估,用于预测延长辅助内分泌治疗持续时间的益处
- 批准号:
10722146 - 财政年份:2023
- 资助金额:
$ 39.2万 - 项目类别:
AUGMENTING THE QUALITY AND DURATION OF THE IMMUNE RESPONSE WITH A NOVEL TLR2 AGONIST-ALUMINUM COMBINATION ADJUVANT
使用新型 TLR2 激动剂-铝组合佐剂增强免疫反应的质量和持续时间
- 批准号:
10933287 - 财政年份:2023
- 资助金额:
$ 39.2万 - 项目类别:
DEVELOPMENT OF SAS A SYNTHETIC AS01-LIKE ADJUVANT SYSTEM FOR INFLUENZA VACCINES
流感疫苗类 AS01 合成佐剂系统 SAS 的开发
- 批准号:
10935776 - 财政年份:2023
- 资助金额:
$ 39.2万 - 项目类别:
DEVELOPMENT OF SMALL-MOLECULE DUAL ADJUVANT SYSTEM FOR INFLUENZA VIRUS VACCINE
流感病毒疫苗小分子双佐剂体系的研制
- 批准号:
10935796 - 财政年份:2023
- 资助金额:
$ 39.2万 - 项目类别:
A GLYCOLIPID ADJUVANT 7DW8-5 FOR MALARIA VACCINES
用于疟疾疫苗的糖脂佐剂 7DW8-5
- 批准号:
10935775 - 财政年份:2023
- 资助金额:
$ 39.2万 - 项目类别:
Adjuvant strategies for universal and multiseasonal influenza vaccine candidates in the context of pre-existing immunity
在已有免疫力的情况下通用和多季节流感候选疫苗的辅助策略
- 批准号:
10649041 - 财政年份:2023
- 资助金额:
$ 39.2万 - 项目类别:
Adjuvant Photodynamic Therapy to Reduce Bacterial Bioburden in High-Energy Contaminated Open Fractures
辅助光动力疗法可减少高能污染开放性骨折中的细菌生物负载
- 批准号:
10735964 - 财政年份:2023
- 资助金额:
$ 39.2万 - 项目类别:














{{item.name}}会员




