Advanced breast tomosynthesis reconstruction for improved cancer diagnosis

先进的乳房断层合成重建可改善癌症诊断

基本信息

  • 批准号:
    10323267
  • 负责人:
  • 金额:
    $ 47.67万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-01-10 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

Digital Breast Tomosynthesis (DBT) has been shown to significantly improve the detection and characterization of soft-tissue lesions and reduce false positive recalls in breast cancer screening. However, DBT is still at its early stage of clinical use and continued improvement of the system design and reconstruction methods are crucial to fully exploit its potential. Noise and resolution are major factors in optimization of an imaging system. The noise in DBT is much higher than that in digital mammograms (DMs) because the multiple low-dose projections increase the total detector noise. The oblique incidence to the breast and the detector at large-angle projections further aggravates the noise problem and reduces spatial resolution. Synthetic mammograms cannot resolve these problems because they are generated from the DBT. It is known from CT that iterative reconstruction (IR) with properly designed regularizer can significantly reduce noise. However, IR for CT generally does not consider spatial blur and noise correlation/aliasing. Modeling these factors has recently started in CBCT that uses flat panel detectors. Model-based IR (MBIR) technology has not been developed for DBT. DBT is a limited-angle tomography, which, coupled with the very different target signals that are signs of breast cancer (microcalcifications, spiculated/ill-defined masses and distortions) than those in CT or CBCT, makes it much more challenging to develop MBIR for DBT. The goal of the proposed project is to develop MBIR for DBT by accurate physics and statistics modeling of the imaging system to improve the image quality of DBT. We will develop accelerated reconstruction algorithms for these models to facilitate both research and eventual translation to clinical use of such methods. Our specific aims are: (SA1) prepare three data sets for development of the MBIR method (simulated DBT projection data, DBT projections of physical phantoms, and human subject DBT projections), and study the impacts of various image degrading factors on the reconstructed DBT; (SA2) develop MBIR by optimizing the design of the objective function and the iterative algorithm using the three types of data obtained in (SA1) and a four-tier approach; and (SA3) validate the developed MBIR method by comparison with current reconstruction techniques in terms of the detection accuracy of target signals by radiologists (ROC study) and by computer-aided detection (CAD) systems in human subject DBT images. This project brings together two research teams with complementary expertise, one in imaging physics, image analysis and lesion detection in DBT, the other in statistical iterative reconstruction for CT/SPECT/ PET/MRI, to tackle this limited-angle reconstruction problem. If successful, DBT reconstructed with the new MBIR method is expected to improve the efficacy of early breast cancer detection and diagnosis and reduce dose. Reducing dose and noise will also facilitate the optimization of overall DBT system design, and development of advanced DBT techniques such as dual-energy contrast-enhanced DBT or dynamic contrast-enhanced DBT, which may be cost-effective alternatives to breast MRI for cancer diagnosis.
数字乳腺断层合成摄影(DBT)已被证明可以显著改善检测, 乳腺癌筛查中的软组织病变的表征和减少假阳性召回。然而,在这方面, DBT仍处于临床使用的早期阶段,系统设计仍在不断改进, 重建方法对于充分发挥其潜力至关重要。噪声和分辨率是影响 成像系统的优化。DBT中的噪声远高于数字乳腺X线照片(DM)中的噪声 因为多个低剂量投影增加了总的探测器噪声。斜入射到 大角度投影下的乳房和检测器进一步消除了噪声问题, 分辨率合成乳房X线照片不能解决这些问题,因为它们是由 DBT。从CT可知,具有适当设计的正则化器的迭代重建(IR)可以显著地 减少噪音。然而,用于CT的IR通常不考虑空间模糊和噪声相关/混叠。 最近,在使用平板探测器的CBCT中开始对这些因素进行建模。基于模型的信息检索(MBIR) DBT技术尚未开发。DBT是一种有限角度断层扫描,与 作为乳腺癌体征的非常不同的靶信号(微钙化、毛刺/边界不清的肿块 和失真),使得开发用于DBT的MBIR更具挑战性。 该项目的目标是通过精确的物理和统计方法为DBT开发MBIR 成像系统的建模,以提高DBT的图像质量。我们将加速发展 这些模型的重建算法,以促进研究和最终转化为临床使用 这样的方法。我们的具体目标是:(SA 1)为MBIR方法的开发准备三个数据集 (模拟DBT投影数据、物理幻象的DBT投影和人类受试者DBT投影), 并研究了各种图像退化因素对重建DBT的影响;(SA 2)通过以下方法开发MBIR: 使用三种类型的数据优化目标函数和迭代算法的设计 在(SA 1)和四层方法中获得;和(SA 3)通过比较验证开发的MBIR方法 就放射科医师对目标信号的检测精度而言 (ROC研究)和计算机辅助检测(CAD)系统在人类受试者DBT图像。 该项目汇集了两个具有互补专业知识的研究团队,一个在成像物理学, DBT中的图像分析和病变检测,CT/SPECT的统计迭代重建, PET/MRI,来解决这个有限角度的重建问题。如果成功,则使用新的 MBIR方法有望提高乳腺癌早期检测和诊断的疗效, 次给药结束减少剂量和噪声也将促进整个DBT系统设计的优化, 先进的DBT技术的发展,如双能量对比度增强DBT或动态 对比增强DBT,这可能是乳腺MRI用于癌症诊断的成本效益替代方案。

项目成果

期刊论文数量(15)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Risks of feature leakage and sample size dependencies in deep feature extraction for breast mass classification.
  • DOI:
    10.1002/mp.14678
  • 发表时间:
    2021-06
  • 期刊:
  • 影响因子:
    3.8
  • 作者:
    Samala RK;Chan HP;Hadjiiski L;Helvie MA
  • 通讯作者:
    Helvie MA
Deep Convolutional Neural Network With Adversarial Training for Denoising Digital Breast Tomosynthesis Images.
Artificial intelligence in medicine: mitigating risks and maximizing benefits via quality assurance, quality control, and acceptance testing.
医学中的人工智能:通过质量保证、质量控制和验收测试降低风险并最大化收益。
  • DOI:
    10.1093/bjrai/ubae003
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Mahmood,Usman;Shukla-Dave,Amita;Chan,Heang-Ping;Drukker,Karen;Samala,RaviK;Chen,Quan;Vergara,Daniel;Greenspan,Hayit;Petrick,Nicholas;Sahiner,Berkman;Huo,Zhimin;Summers,RonaldM;Cha,KennyH;Tourassi,Georgia;Deserno,ThomasM;G
  • 通讯作者:
    G
Synthesizing mammogram from digital breast tomosynthesis.
从数字乳房断层合成合成乳房X线照片。
  • DOI:
    10.1088/1361-6560/aafcda
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    Wei,Jun;Chan,Heang-Ping;Helvie,MarkA;Roubidoux,MarilynA;Neal,ColleenH;Lu,Yao;Hadjiiski,LubomirM;Zhou,Chuan
  • 通讯作者:
    Zhou,Chuan
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

HEANG-PING CHAN其他文献

HEANG-PING CHAN的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('HEANG-PING CHAN', 18)}}的其他基金

Improvement of microcalcification detection in digital breast tomosynthesis
数字乳腺断层合成中微钙化检测的改进
  • 批准号:
    8327742
  • 财政年份:
    2011
  • 资助金额:
    $ 47.67万
  • 项目类别:
Improvement of microcalcification detection in digital breast tomosynthesis
数字乳腺断层合成中微钙化检测的改进
  • 批准号:
    8514397
  • 财政年份:
    2011
  • 资助金额:
    $ 47.67万
  • 项目类别:
Improvement of microcalcification detection in digital breast tomosynthesis
数字乳腺断层合成中微钙化检测的改进
  • 批准号:
    8108142
  • 财政年份:
    2011
  • 资助金额:
    $ 47.67万
  • 项目类别:
Computer-aided detection of non-calcified plaques in coronary CT angiograms
冠状动脉 CT 血管造影中非钙化斑块的计算机辅助检测
  • 批准号:
    8206668
  • 财政年份:
    2010
  • 资助金额:
    $ 47.67万
  • 项目类别:
Computer-aided detection of non-calcified plaques in coronary CT angiograms
冠状动脉 CT 血管造影中非钙化斑块的计算机辅助检测
  • 批准号:
    8392109
  • 财政年份:
    2010
  • 资助金额:
    $ 47.67万
  • 项目类别:
Computer-aided detection of non-calcified plaques in coronary CT angiograms
冠状动脉 CT 血管造影中非钙化斑块的计算机辅助检测
  • 批准号:
    8032999
  • 财政年份:
    2010
  • 资助金额:
    $ 47.67万
  • 项目类别:
Computer-aided detection of non-calcified plaques in coronary CT angiograms
冠状动脉 CT 血管造影中非钙化斑块的计算机辅助检测
  • 批准号:
    8586273
  • 财政年份:
    2010
  • 资助金额:
    $ 47.67万
  • 项目类别:
Digital Tomosynthesis Mammography: Computer-Aided Analysis of Masses
数字断层合成乳房X线摄影:计算机辅助肿块分析
  • 批准号:
    7498781
  • 财政年份:
    2006
  • 资助金额:
    $ 47.67万
  • 项目类别:
Digital Tomosynthesis Mammography: Computer-Aided Analysis of Masses
数字断层合成乳房X线摄影:计算机辅助肿块分析
  • 批准号:
    7080103
  • 财政年份:
    2006
  • 资助金额:
    $ 47.67万
  • 项目类别:
Digital Tomosynthesis Mammography: Computer-Aided Analysis of Masses
数字断层合成乳房X线摄影:计算机辅助肿块分析
  • 批准号:
    7500088
  • 财政年份:
    2006
  • 资助金额:
    $ 47.67万
  • 项目类别:

相似海外基金

ADVANCED DEVELOPMENT OF LQ A LIPOSOME-BASED SAPONIN-CONTAINING ADJUVANT FOR USE IN PANSARBECOVIRUS VACCINES
用于 Pansarbecovirus 疫苗的 LQ A 脂质体含皂苷佐剂的先进开发
  • 批准号:
    10935820
  • 财政年份:
    2023
  • 资助金额:
    $ 47.67万
  • 项目类别:
ADVANCED DEVELOPMENT OF BBT-059 AS A RADIATION MEDICAL COUNTERMEASURE FOR DOSING UP TO 48H POST EXPOSURE"
BBT-059 的先进开发,作为辐射医学对策,可在暴露后 48 小时内进行给药”
  • 批准号:
    10932514
  • 财政年份:
    2023
  • 资助金额:
    $ 47.67万
  • 项目类别:
Advanced Development of a Combined Shigella-ETEC Vaccine
志贺氏菌-ETEC 联合疫苗的先进开发
  • 批准号:
    10704845
  • 财政年份:
    2023
  • 资助金额:
    $ 47.67万
  • 项目类别:
Advanced development of composite gene delivery and CAR engineering systems
复合基因递送和CAR工程系统的先进开发
  • 批准号:
    10709085
  • 财政年份:
    2023
  • 资助金额:
    $ 47.67万
  • 项目类别:
Advanced Development of Gemini-DHAP
Gemini-DHAP的高级开发
  • 批准号:
    10760050
  • 财政年份:
    2023
  • 资助金额:
    $ 47.67万
  • 项目类别:
Advanced development and validation of an in vitro platform to phenotype brain metastatic tumor cells using artificial intelligence
使用人工智能对脑转移肿瘤细胞进行表型分析的体外平台的高级开发和验证
  • 批准号:
    10409385
  • 财政年份:
    2022
  • 资助金额:
    $ 47.67万
  • 项目类别:
ADVANCED DEVELOPMENT OF A VACCINE FOR PANDEMIC AND PRE-EMERGENT CORONAVIRUSES
针对大流行和突发冠状病毒的疫苗的高级开发
  • 批准号:
    10710595
  • 财政年份:
    2022
  • 资助金额:
    $ 47.67万
  • 项目类别:
Advanced development and validation of an in vitro platform to phenotype brain metastatic tumor cells using artificial intelligence
使用人工智能对脑转移肿瘤细胞进行表型分析的体外平台的高级开发和验证
  • 批准号:
    10630975
  • 财政年份:
    2022
  • 资助金额:
    $ 47.67万
  • 项目类别:
ADVANCED DEVELOPMENT OF A VACCINE CANDIDATE FOR STAPHYLOCOCCUS AUREUS INFECTION
金黄色葡萄球菌感染候选疫苗的高级开发
  • 批准号:
    10710588
  • 财政年份:
    2022
  • 资助金额:
    $ 47.67万
  • 项目类别:
ADVANCED DEVELOPMENT OF A VACCINE FOR PANDEMIC AND PRE-EMERGENT CORONAVIRUSES
针对大流行和突发冠状病毒的疫苗的高级开发
  • 批准号:
    10788051
  • 财政年份:
    2022
  • 资助金额:
    $ 47.67万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了