geneXwell: Multidimensional Omic Risk Models and Dynamic Visualizations to Drive Positive Change in Employee Behavioral Economics
geneXwell:多维组学风险模型和动态可视化推动员工行为经济学的积极变化
基本信息
- 批准号:10325942
- 负责人:
- 金额:$ 1.67万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-21 至 2022-03-31
- 项目状态:已结题
- 来源:
- 关键词:AlgorithmsAppleAreaBehaviorBehavioralBehavioral SciencesBiometryCardiologyCause of DeathChronicClinicalCollaborationsComplexCoronary ArteriosclerosisCoupledDataData AnalysesDecision MakingDiagnosticDiseaseDisease OutcomeEarly InterventionEconomicsEmployeeEmployee HealthEnsureEventFast Healthcare Interoperability ResourcesGeneticGenetic RiskGenomicsGoalsGuidelinesHealthHealth BenefitHealth Care CostsIncidenceIndividualInstitutesInterventionIntuitionLife StyleLipidsMeasuresMedialModelingModernizationModificationMyocardial InfarctionNaturePhasePoliciesPopulationPredictive AnalyticsPreventionPrevention strategyPrivacyPrivatizationProceduresProcessProductivityRelative RisksReportingResearchResearch SupportRiskRisk AssessmentRisk EstimateRisk FactorsRunningSamplingSocial MarketingSourceStentsStructureSurveysSystemTestingTheory of ChangeTherapeutic InterventionTranslational ResearchUnited StatesUrsidae FamilyVisionVisualizationVisualization softwarebasebehavior changebehavioral economicsbehavioral healthcare systemsclinical riskcostcost effectivecyber securitydigitaldisorder riskeffective interventionempoweredencryptionexperiencefinancial incentiveimprovedinsightmobile computingpersonalized health careprogramsprototyperesponserisk sharingrisk stratificationscreeningshared decision makingsoftware as a servicesymptom managementsymptom treatmenttargeted deliveryusabilityuser centered designverification and validation
项目摘要
Employee productivity is directly related to employee health, providing employers strong financial incentives
to deploy preventative health programs. One of the most challenging & costly chronic conditions is coronary
artery disease (CAD). Most employers spend a significant portion of overall benefits (40-45%) managing &
treating symptoms and risk factors associated with CAD. Each CAD event (heart attack, angina) and related
procedures (stents, CABG) costs the employer $125k in direct medial and productivity costs. These CAD events
are also the number 1 cause of death in the United States. Self-insured employers, which provide health
coverage to 100M individuals in the US, bear the costs of CAD directly. Therefore, any cost-effective approach
able to reduce CAD incidence in employee populations, particularly through early interventions would have
significant societal and economic benefits.
geneXwell provides this opportunity by targeting the delivery of our world-class digital preventative cardiology
program to those employees most at risk for CAD and most likely to benefit from lipid lowering therapy. As part
of ordinary employee health risk assessment, employees provide screening samples for clinical and genomic
analysis. Standard demographic and biometric risk factors are combined with a genetic risk estimate, resulting
in a personalized CAD risk score per employee. The addition of genetic risk both improves risk stratification as
compared to standard clinical guidelines and, more importantly, identifies the nature of risk and the most effective
interventions. This strategy is validated and supported by the research of our co-founders at The Scripps
Research Translational Institute. In the employee setting, this comprehensive risk modeling is used to stratify
the employee pool into risk tiers, and analytics run to determine the cost vs benefit of lifestyle vs therapeutic
intervention strategies for each risk tier. This information is then summarized and displayed via intuitive
visualization tools that allow employees to evaluate the benefits of prevention behaviors and health interventions.
Dynamic visualizations tools will allow collaboration, shared decision making and visibility across all
stakeholders. Revenue will be generated through Software as a Service and risk share models to employers.
Phase I will target the extension of our established baseline risk model to the data available in an employer
health setting, we will develop a prototype employee visualization interface, and conduct a usability study. First,
we will build on our existing, validated polygenic CAD scoring model. We will develop and deploy a CAD risk
score personalized with genetic, demographic, and clinical factors to produce individualized CAD risk scores for
employees. A risk reducer interface will be developed to integrate prevention strategies and anticipated health
benefits to drive employee behavioral change. Next, a prototype employee mobile platform will be developed
with focus on data synchronization across multiple domains and sources, as well as dynamic, intuitive
visualization tools, developed and informed by behavioral science expertise, to guide complex behavioral health
decision making by employees. Once the prototype platform has been integrated at the system level and passes
verification and validation testing, it will be deployed in a usability study with employees to validate interpretability.
员工的生产力与员工的健康直接相关,这为雇主提供了强有力的经济激励
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
AASHUTOSH MISRA其他文献
AASHUTOSH MISRA的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
苹果茎沟病毒(Apple stem grooving virus, ASGV)CP基因介导的RNAi 转基因对ASGV侵染和脱毒的影响研究
- 批准号:31801709
- 批准年份:2018
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Chemical defense system in apple fruit against peach fruit moth
苹果果实对桃果蛀虫的化学防御系统
- 批准号:
22KJ1877 - 财政年份:2023
- 资助金额:
$ 1.67万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Apple Orchard Health: Evaluating Hyperspectral Imagery for Disease Detection and Biostimulant Efficacy.
苹果园健康:评估用于疾病检测和生物刺激剂功效的高光谱图像。
- 批准号:
10079283 - 财政年份:2023
- 资助金额:
$ 1.67万 - 项目类别:
Grant for R&D
Establishment of shoots regeneration system from protoplasts for practical application of genome editing in apple.
原生质体芽再生系统的建立,用于苹果基因组编辑的实际应用。
- 批准号:
23K05220 - 财政年份:2023
- 资助金额:
$ 1.67万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Towards real-time precision crop management: automatic during-harvest assessment of apple yield
实现实时精准作物管理:苹果产量收获期间自动评估
- 批准号:
10080669 - 财政年份:2023
- 资助金额:
$ 1.67万 - 项目类别:
Grant for R&D
Photosynthetic adaptation of an apple tree to low solar radiation and its effect on the growth and fruit production
苹果树对低太阳辐射的光合适应及其对生长和果实产量的影响
- 批准号:
23K05458 - 财政年份:2023
- 资助金额:
$ 1.67万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
環状mRNA・リボソーム・腫瘍増殖因子APPLEによる翻訳開始制御の立体構造解析
环状mRNA、核糖体和肿瘤生长因子APPLE对翻译起始控制的三维结构分析
- 批准号:
23K05674 - 财政年份:2023
- 资助金额:
$ 1.67万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Sustainable pest management technologies to improve yield and support net zero in apple production
可持续害虫治理技术可提高产量并支持苹果净零生产
- 批准号:
10060536 - 财政年份:2023
- 资助金额:
$ 1.67万 - 项目类别:
Collaborative R&D
The APPLE Tree programme: Active Prevention in People at risk of dementia through Lifestyle, bEhaviour change and Technology to build REsiliEnce
APPLE Tree 计划:通过生活方式、行为改变和技术来积极预防痴呆症风险人群,以建立恢复力
- 批准号:
ES/S010408/2 - 财政年份:2023
- 资助金额:
$ 1.67万 - 项目类别:
Research Grant
(Horticulture) Pheromone of Apple Sawfly: New Tool for Management of a Re-emerging Pest
(园艺)苹果叶蜂的信息素:管理重新出现的害虫的新工具
- 批准号:
BB/X011895/1 - 财政年份:2023
- 资助金额:
$ 1.67万 - 项目类别:
Research Grant
Horticulture: Pheromone of Apple Sawfly: New Tool for Management of a Re-emerging Pest
园艺:苹果叶蜂的信息素:管理重新出现的害虫的新工具
- 批准号:
BB/X011925/1 - 财政年份:2023
- 资助金额:
$ 1.67万 - 项目类别:
Research Grant