Integrated Next-generation RF Transmit, Receive and B0 shimming coil system for brain and spinal cord MRI at 7 Tesla

用于 7 特斯拉脑部和脊髓 MRI 的集成下一代射频发射、接收和 B0 匀场线圈系统

基本信息

  • 批准号:
    10445118
  • 负责人:
  • 金额:
    $ 43.93万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-08-15 至 2026-05-31
  • 项目状态:
    未结题

项目摘要

Project Summary/Abstract This proposal is to develop a pre-shimmed parallel transmit array, an optimized receive array, and an RF/ΔB0 array to correct the severe B1 inhomogeneity, maximize the signal-to-noise ratio (SNR), and correct B0 inhomogeneity in simultaneous human brain and spinal cord MR imaging 7 Tesla (T). Simultaneous functional imaging of the brain and spinal cord can provide valuable insight into interactions and processing pathways between these organs in normal and abnormal states of spinal cord injury, chronic pain, and motor disease. It is emerging as a new tool to study the central nervous system and is necessary to enable new investigations of task-based and resting-state sensory/motor processing throughout the cerebrum and spinal cord and shed new light on the nature of resting-state networks within the cerebellum and spinal cord. 7T MRI offers new opportunities to visualize structures of interest with high spatial resolution and enhanced conspicuity and to detect brain function and networks with greater sensitivity. However, at high fields, B1 and B0 inhomogeneities, and the lack of optimized receive coils for some specific applications are major challenges that limit imaging performance. Existed designs are aimed at either brain-only or spinal-cord-only applications, and none have solved all the challenges mentioned above. Moreover, the performance of these designs is limited by the small number of transmit channels available from scanner vendors, and a lack of optimization for actual imaging applications. The first goal of this project is to build a pre-shimmed transmit array which compresses 48 basic coils into 8-“virtual” coils with RF pulse jointly optimized weights, to maximize the transmit performance of standard 8-transmit-channel 7 Tesla scanners. The second goal of this project is to build a close-fitting massive- element receive array with optimum coil geometry/layout/size, to provide high SNR and excellent parallel imaging performance in both the whole brain and the spinal cord. The third goal of this project is to build routing-optimized low-profile RF/ΔB0 array to correct B0 inhomogeneity with less hardware complications. The optimization algorithms, electromagnetic simulation models, and electric/mechanical designs of the final pre-shimmed transmit array, high dense receive array and the routing-optimized ΔB0 arrays, will be distributed for open access. These transmit, receive, and ΔB0 arrays do not depend on the vendors’ platform and can be easily transferred to other 7T sites, with benefits for the entire community.
项目概要/摘要 该提案旨在开发预匀场并行发射阵列、优化接收阵列和 RF/ΔB0 阵列来纠正严重的 B1 不均匀性,最大化信噪比 (SNR),并纠正 B0 人脑和脊髓同步 MR 成像的不均匀性 7 Tesla (T)。同时功能 大脑和脊髓的成像可以为相互作用和处理途径提供有价值的见解 这些器官在脊髓损伤、慢性疼痛和运动疾病的正常和异常状态下之间存在差异。这是 正在成为研究中枢神经系统的新工具,对于进行新的研究是必要的 整个大脑和脊髓基于任务和静息状态的感觉/运动处理,并释放新的 阐明小脑和脊髓内静息态网络的性质。 7T MRI 提供新功能 有机会以高空间分辨率和增强的显着性可视化感兴趣的结构,并 更灵敏地检测大脑功能和网络。然而,在高场下,B1 和 B0 不均匀, 缺乏针对某些特定应用的优化接收线圈是限制成像的主要挑战 表现。现有的设计主要针对仅大脑或仅脊髓的应用,但没有一个设计针对仅大脑或仅脊髓的应用。 解决了上述所有挑战。此外,这些设计的性能受到小尺寸的限制。 扫描仪供应商提供的传输通道数量,以及缺乏对实际成像的优化 应用程序。该项目的第一个目标是构建一个预匀场发射阵列,该阵列压缩 48 个基本 将线圈分成8个“虚拟”线圈,射频脉冲联合优化权重,以最大限度地提高发射性能 标准 8 传输通道 7 Tesla 扫描仪。该项目的第二个目标是建造一个紧密贴合的大型- 具有最佳线圈几何形状/布局/尺寸的元件接收阵列,以提供高信噪比和出色的并行成像 整个大脑和脊髓的表现。该项目的第三个目标是构建路由优化的 薄型 RF/ΔB0 阵列可纠正 B0 不均匀性,同时减少硬件复杂性。优化 最终预匀场的算法、电磁仿真模型和电气/机械设计 发射阵列、高密度接收阵列和路由优化的ΔB0阵列将被分发以供开放访问。 这些发送、接收和ΔB0阵列不依赖于供应商的平台,可以轻松转移 到其他 7T 站点,为整个社区带来好处。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xinqiang Yan其他文献

Xinqiang Yan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Xinqiang Yan', 18)}}的其他基金

Miniature and integrable balun for light-weight and flexible MRI RF coils
用于轻型、灵活 MRI 射频线圈的微型、可集成巴伦
  • 批准号:
    10640644
  • 财政年份:
    2023
  • 资助金额:
    $ 43.93万
  • 项目类别:
Integrated Next-generation RF Transmit, Receive and B0 shimming coil system for brain and spinal cord MRI at 7 Tesla
用于 7 特斯拉脑部和脊髓 MRI 的集成下一代射频发射、接收和 B0 匀场线圈系统
  • 批准号:
    10681409
  • 财政年份:
    2022
  • 资助金额:
    $ 43.93万
  • 项目类别:
Passive antennas for improved image quality in transcranial MR-guided focused ultrasound
用于提高经颅 MR 引导聚焦超声图像质量的无源天线
  • 批准号:
    10394425
  • 财政年份:
    2020
  • 资助金额:
    $ 43.93万
  • 项目类别:

相似海外基金

CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 43.93万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 43.93万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 43.93万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 43.93万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 43.93万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 43.93万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 43.93万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 43.93万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 43.93万
  • 项目类别:
    Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 43.93万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了