Integrated Next-generation RF Transmit, Receive and B0 shimming coil system for brain and spinal cord MRI at 7 Tesla
用于 7 特斯拉脑部和脊髓 MRI 的集成下一代射频发射、接收和 B0 匀场线圈系统
基本信息
- 批准号:10445118
- 负责人:
- 金额:$ 43.93万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-15 至 2026-05-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAlgorithmsAnatomyAreaBehaviorBrainBrain imagingCerebellumCerebrumCervical spinal cord structureCervical spineChokingCommunitiesComplexConsumptionData AnalysesDevelopmentDiseaseElectromagneticsElementsEngineeringFunctional ImagingFunctional Magnetic Resonance ImagingGeometryGoalsHumanImageImaging technologyImpairmentInjuryInvestigationLightMagnetic Resonance ImagingMeasuresMechanicsMotorNatureNeuraxisNoiseOrganPainPathway interactionsPatternPerformancePhysiologic pulseProcessProtocols documentationReproducibility of ResultsResolutionRestRouteSensorySignal TransductionSiteSpinal CordSpinal cord injuryStructureSystemTherapy EvaluationVendorVertebral columnWeightWorkbasechronic paindensitydesigndesign and constructionexperimental studyhuman subjectimprovedinnovationinsightinterestmodels and simulationmotor disordernervous system disordernext generationnoveloperationrelating to nervous systemresponsespinal cord imagingtooltransmission processvirtual
项目摘要
Project Summary/Abstract
This proposal is to develop a pre-shimmed parallel transmit array, an optimized receive array, and an RF/ΔB0
array to correct the severe B1 inhomogeneity, maximize the signal-to-noise ratio (SNR), and correct B0
inhomogeneity in simultaneous human brain and spinal cord MR imaging 7 Tesla (T). Simultaneous functional
imaging of the brain and spinal cord can provide valuable insight into interactions and processing pathways
between these organs in normal and abnormal states of spinal cord injury, chronic pain, and motor disease. It is
emerging as a new tool to study the central nervous system and is necessary to enable new investigations of
task-based and resting-state sensory/motor processing throughout the cerebrum and spinal cord and shed new
light on the nature of resting-state networks within the cerebellum and spinal cord. 7T MRI offers new
opportunities to visualize structures of interest with high spatial resolution and enhanced conspicuity and to
detect brain function and networks with greater sensitivity. However, at high fields, B1 and B0 inhomogeneities,
and the lack of optimized receive coils for some specific applications are major challenges that limit imaging
performance. Existed designs are aimed at either brain-only or spinal-cord-only applications, and none have
solved all the challenges mentioned above. Moreover, the performance of these designs is limited by the small
number of transmit channels available from scanner vendors, and a lack of optimization for actual imaging
applications. The first goal of this project is to build a pre-shimmed transmit array which compresses 48 basic
coils into 8-“virtual” coils with RF pulse jointly optimized weights, to maximize the transmit performance of
standard 8-transmit-channel 7 Tesla scanners. The second goal of this project is to build a close-fitting massive-
element receive array with optimum coil geometry/layout/size, to provide high SNR and excellent parallel imaging
performance in both the whole brain and the spinal cord. The third goal of this project is to build routing-optimized
low-profile RF/ΔB0 array to correct B0 inhomogeneity with less hardware complications. The optimization
algorithms, electromagnetic simulation models, and electric/mechanical designs of the final pre-shimmed
transmit array, high dense receive array and the routing-optimized ΔB0 arrays, will be distributed for open access.
These transmit, receive, and ΔB0 arrays do not depend on the vendors’ platform and can be easily transferred
to other 7T sites, with benefits for the entire community.
项目总结/文摘
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xinqiang Yan其他文献
Xinqiang Yan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xinqiang Yan', 18)}}的其他基金
Miniature and integrable balun for light-weight and flexible MRI RF coils
用于轻型、灵活 MRI 射频线圈的微型、可集成巴伦
- 批准号:
10640644 - 财政年份:2023
- 资助金额:
$ 43.93万 - 项目类别:
Integrated Next-generation RF Transmit, Receive and B0 shimming coil system for brain and spinal cord MRI at 7 Tesla
用于 7 特斯拉脑部和脊髓 MRI 的集成下一代射频发射、接收和 B0 匀场线圈系统
- 批准号:
10681409 - 财政年份:2022
- 资助金额:
$ 43.93万 - 项目类别:
Passive antennas for improved image quality in transcranial MR-guided focused ultrasound
用于提高经颅 MR 引导聚焦超声图像质量的无源天线
- 批准号:
10394425 - 财政年份:2020
- 资助金额:
$ 43.93万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 43.93万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 43.93万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 43.93万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 43.93万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 43.93万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 43.93万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 43.93万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 43.93万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 43.93万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 43.93万 - 项目类别:
Continuing Grant