Technology and Computational Core
技术与计算核心
基本信息
- 批准号:10328118
- 负责人:
- 金额:$ 174.61万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-16 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:2019-nCoVAlgebraAlgorithmsAmino Acid SequenceBase SequenceBiologicalBiological ModelsBloodBlood specimenCellsCellular Indexing of Transcriptomes and Epitopes by SequencingChemistryClinicalClonal ExpansionCollaborationsComplexComputer AnalysisComputer ModelsComputing MethodologiesCoronavirusDataData AnalysesData SetDevelopmentDiseaseEcosystemEmulsionsEngineeringEnsureEpitopesExperimental DesignsFutureGene Expression ProfilingGenerationsGenetic TranscriptionGenomic approachGenomicsGoalsImmuneImmune responseImmunityImmunizationImmunizeImmunological ModelsImmunologistInfectionLungMachine LearningMeasurementMembrane ProteinsMethodsModelingMolecularMusNaturePathway interactionsPhenotypePopulationPublicationsRNARecording of previous eventsReproducibilityResearchResearch PersonnelResearch Project GrantsResearch SupportSARS-CoV-2 variantScientistSpecimenStandardizationStructure of parenchyma of lungSystemT-LymphocyteTechniquesTechnologyTestingTherapeuticTissue SampleTissue-Specific Gene ExpressionTissuesVaccinesVariantVirusWorkantigen antibody bindingbasecell typecomputer sciencecoronavirus vaccinedata integrationdesignexperimental analysisexperimental studygenomic datahuman subjectinnovationinsightmachine learning methodmultidisciplinarynext generationnovelpandemic diseasepathogenpreventprogramsreceptorresponsesingle cell analysissingle-cell RNA sequencingstemsuccessuniversal coronavirus vaccineworking group
项目摘要
PROJECT SUMMARY CORE B
The goal of this Program Project is to bring together a multi-disciplinary team to produce information necessary
for the design and testing of the next-generation of CoV vaccine strategies that will have the greatest possible
breadth across other CoVs. Results from all three projects will inform design of Pan-Coronavirus vaccines
against evolving SARS-CoV-2 variants and other coronaviruses to stem current and prevent future pandemics.
This will be accomplished through three dynamic and integrative projects examining various key aspects of
vaccine strategies. The Technology and Computational Core B will support, in close interaction with each of the
other investigators, all three Projects to gain maximal insight from the proposed experimental work. Based on
the need for centralized tissue and blood processing, single-cell genomics and TCR sequencing data generation,
and integrative computational analyses, we hypothesized that having a central Technology and Computational
Core, as opposed to having each project working independently, will be critical to the success of the work
proposed in this Program application and will maximize comparisons and integration of data across projects. A
centralized working group of immunologists, sequencing experts, and computational biologists is the best way
to ensure that this research will be properly carried out with maximal identification and use of appropriate
computational methods. Through Aim 1, Core B will support all three Research Projects by providing expert
advice and assistance on executing single-cell genomics and TCR sequencing experimental and analytical
strategies of blood and tissue specimens collected from human subjects and lung from immunized mice. The
standardized frameworks provided by the Core staff will add rigor and reproducibility to all experiments by
removing any variation that might otherwise arise. Core B will also provide collaborative efforts on multi-variate
modeling of immune system response and antigen/antibody binding (Aim 2). Because of the complexity of
immune responses to pathogens, our ability to gain insights and principles from the experimental datasets
generated across all three Projects will be enhanced by integrative computational analysis and modeling
embracing an integrative systems perspective. This complexity derives from diverse issues including: (a)
concomitant contributions from multiple variables together govern observed responses, rather than any single
variable being determinative by itself; (b) these multi-variate contributions are generally not independent, but
instead are typically co- or anti-correlated; and (c) these contributions often are non-linear in nature. Most
standard statistical techniques typically violate one or more of these issues, so the purpose of this Core is to
apply computational approaches arising from engineering and computer science, including “machine learning”
techniques, that can in fact accommodate any or all of them. Finally, Core B will provide additional assistance
for any complicated experimental design or analysis if/as needed. To aid with transparency, all data and analysis
frameworks supporting all findings will be made publicly available upon acceptance for publication.
项目概要核心B
本计划项目的目标是汇集一个多学科的团队,以产生必要的信息
用于设计和测试下一代冠状病毒疫苗策略,
在其他COV中的广度。所有三个项目的结果将为泛冠状病毒疫苗的设计提供信息
对抗不断演变的SARS-CoV-2变种和其他冠状病毒,以遏制当前和预防未来的大流行。
这将通过三个充满活力的综合项目来实现,
疫苗战略。技术和计算核心B将通过与
其他研究人员,所有三个项目,以获得最大的洞察力,从拟议的实验工作。基于
需要集中的组织和血液处理,单细胞基因组学和TCR测序数据生成,
和综合计算分析,我们假设,有一个中央技术和计算
核心,而不是让每个项目独立工作,将是至关重要的工作的成功
在本计划申请中提出,并将最大限度地比较和整合项目之间的数据。一
由免疫学家、测序专家和计算生物学家组成的集中工作组是最好的方法
以确保这项研究将适当进行,最大限度地识别和使用适当的
计算方法通过目标1,核心B将通过提供专家支持所有三个研究项目。
在执行单细胞基因组学和TCR测序实验和分析方面提供建议和协助
从人类受试者收集的血液和组织样本以及从免疫小鼠收集的肺的策略。的
核心人员提供的标准化框架将增加所有实验的严谨性和可重复性,
消除了可能出现的任何变化。核心B还将在多变量
免疫系统应答和抗原/抗体结合的建模(目标2)。的复杂性
对病原体的免疫反应,我们从实验数据集中获得见解和原理的能力
通过综合计算分析和建模,
采用综合系统的观点。这种复杂性来自各种问题,包括:
多个变量的共同贡献共同决定了观察到的响应,而不是任何单一的
变量本身是决定性的;(B)这些多变量贡献通常不是独立的,但是
而是典型地是共相关或反相关的;以及(c)这些贡献在本质上通常是非线性的。最
标准的统计技术通常会违反这些问题中的一个或多个,因此本核心的目的是
应用来自工程和计算机科学的计算方法,包括“机器学习”
技术,事实上可以容纳任何或所有这些。最后,核心B将提供额外援助
任何复杂的实验设计或分析,如果/根据需要。为了提高透明度,所有数据和分析
支持所有调查结果的框架将在接受出版后公布。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alexandra-Chloe Villani其他文献
Alexandra-Chloe Villani的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alexandra-Chloe Villani', 18)}}的其他基金
相似海外基金
DMS-EPSRC: Certifying Accuracy of Randomized Algorithms in Numerical Linear Algebra
DMS-EPSRC:验证数值线性代数中随机算法的准确性
- 批准号:
EP/Y030990/1 - 财政年份:2024
- 资助金额:
$ 174.61万 - 项目类别:
Research Grant
FET: SMALL: Quantum algorithms and complexity for quantum algebra and topology
FET:小:量子算法以及量子代数和拓扑的复杂性
- 批准号:
2330130 - 财政年份:2024
- 资助金额:
$ 174.61万 - 项目类别:
Standard Grant
DMS-EPSRC:Certifying Accuracy of Randomized Algorithms in Numerical Linear Algebra
DMS-EPSRC:验证数值线性代数中随机算法的准确性
- 批准号:
2313434 - 财政年份:2023
- 资助金额:
$ 174.61万 - 项目类别:
Standard Grant
Algorithms for exact linear algebra
精确线性代数算法
- 批准号:
RGPIN-2018-05256 - 财政年份:2022
- 资助金额:
$ 174.61万 - 项目类别:
Discovery Grants Program - Individual
Computer Algebra: Algorithms and Applications
计算机代数:算法与应用
- 批准号:
RGPIN-2018-06670 - 财政年份:2022
- 资助金额:
$ 174.61万 - 项目类别:
Discovery Grants Program - Individual
CAREER: Fast Linear Algebra: Algorithms and Fundamental Limits
职业:快速线性代数:算法和基本限制
- 批准号:
2046235 - 财政年份:2021
- 资助金额:
$ 174.61万 - 项目类别:
Continuing Grant
Algorithms for exact linear algebra
精确线性代数算法
- 批准号:
RGPIN-2018-05256 - 财政年份:2021
- 资助金额:
$ 174.61万 - 项目类别:
Discovery Grants Program - Individual
New Algorithms for Computer Algebra, Implementations and Applications
计算机代数新算法、实现和应用
- 批准号:
RGPIN-2016-04039 - 财政年份:2021
- 资助金额:
$ 174.61万 - 项目类别:
Discovery Grants Program - Individual
Algorithms for exact linear algebra
精确线性代数算法
- 批准号:
RGPIN-2018-05256 - 财政年份:2020
- 资助金额:
$ 174.61万 - 项目类别:
Discovery Grants Program - Individual