Mechanism and function of retrograde mitochondrial transport in axons
轴突逆行线粒体转运的机制和功能
基本信息
- 批准号:10340724
- 负责人:
- 金额:$ 37.54万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-02-15 至 2027-01-31
- 项目状态:未结题
- 来源:
- 关键词:Active Biological TransportAdaptor Signaling ProteinAddressAfferent NeuronsAlzheimer&aposs DiseaseApoptoticAxonBindingBiogenesisBiologicalBiological AssayBiologyBiosensorCalciumCardiolipinsCell Culture TechniquesCell physiologyCellsCellular biologyDataDefectDiseaseDynein ATPaseEndoplasmic ReticulumEukaryotic CellGeneticGenetic ScreeningGoalsHealthHomeostasisHourHumanImageIn VitroIndividualIronKnowledgeLabelLifeLinkLipid BindingLipidsMaintenanceMediatingMetabolicMitochondriaMolecularMotorMutateNeurodegenerative DisordersNeuronsOrganellesOrganismOuter Mitochondrial MembranePathologyPathway interactionsPatientsPopulationPositioning AttributeProcessProductionProteinsProteomeProtocols documentationRecyclingRegulationRoleSignal TransductionSignaling MoleculeSiteSourceSystemTestingTherapeuticTherapeutic InterventionTransgenic OrganismsWorkZebrafishagedanterograde transportbasedesignexperimental studyfascinateimaging approachin vivoin vivo imaginginduced pluripotent stem cellinsightmetermutantneural circuitneuroimagingneuronal cell bodyneuronal survivalretrograde transporttooltranscriptome
项目摘要
Project Summary
Mitochondria are essential for cellular function and organism viability. These organelles are well known for their
production of ATP, the primary energy currency of most eukaryotic cells. Less well known are the plethora of
other functions these organelles have including production of signaling molecules, regulation of apoptotic
signaling cascades, serving as a calcium sink, and also being the primary storage and utilization site of iron in
the cell. To serve these diverse functions, mitochondria must be properly localized in all cells; however, this
organelle is particularly critical in neurons. Neurons are highly metabolically active, electrically polarized, and
can have an enormous volume making regulation of the mitochondrial population particularly challenging.
Likely due to the high metabolic demands of this cell, precise control of mitochondrial localization and
maintenance of mitochondrial health are essential for neuronal survival. Abnormal mitochondrial localization,
health, and function have been linked to many neurodegenerative diseases including Alzheimer’s disease. In
Alzheimer’s, defects in mitochondrial calcium load and contacts with the endoplasmic reticulum have both
been noted. Additionally, advanced neuroimaging of early-stage patients revealed defects in mitochondrial
function, making understanding how mitochondrial function is maintained in neurons paramount to
understanding disease biology. While the last several decades have revealed fascinating insights into
mitochondrial biology in neurons, we still do not have a thorough understanding of how the population of
mitochondria is maintained over the long life of the neuron. Anterograde transport is critical for bringing healthy
organelles from the cell body into the long axonal process which can extend a meter from the cell body in
humans. Conversely, retrograde transport moves aged or damaged organelles towards to cell body. Once
damaged organelles reach the cell body, some undergo targeted degradation. The fate of the bulk of these
organelles and the source of healthy mitochondria has not been defined. We have developed an in vivo system
to address these long-standing questions in the field. Using zebrafish neurons, we can image mitochondrial
localization, health, and transport in vivo in a fully intact neural circuit. We have developed transgenic lines,
genetic tools, and imaging approaches to individually label mitochondria to track them and follow their lifetime
and biogenesis in neurons. This will allow us to determine the source of healthy mitochondria necessary for
maintenance of the population in neurons (Aim 1). Independently, we designed a strategy to define the
mechanism of motor-mitochondria attachment specifically necessary for retrograde transport of the organelle
(Aim 2). Together, the proposed experiments will provide mechanistic insight into how and why mitochondria
move in the retrograde direction while also defining the source of healthy organelles necessary for
maintenance of the mitochondrial population in neurons. The knowledge gained will enhance our insight into
the basic biology of the cell that can be repurposed for potential therapeutic interventions.
项目总结
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Catherine M Drerup其他文献
Catherine M Drerup的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Catherine M Drerup', 18)}}的其他基金
Mechanism and function of retrograde mitochondrial transport in axons
轴突逆行线粒体转运的机制和功能
- 批准号:
10570955 - 财政年份:2022
- 资助金额:
$ 37.54万 - 项目类别:
Identifying modulators of dynein-based cargo motility
识别基于动力蛋白的货物运动调节剂
- 批准号:
8862557 - 财政年份:2014
- 资助金额:
$ 37.54万 - 项目类别:
Identifying modulators of dynein-based cargo motility
识别基于动力蛋白的货物运动调节剂
- 批准号:
8790875 - 财政年份:2014
- 资助金额:
$ 37.54万 - 项目类别:
In vivo analysis of the mechanisms of axon transport.
轴突运输机制的体内分析。
- 批准号:
8125867 - 财政年份:2011
- 资助金额:
$ 37.54万 - 项目类别:














{{item.name}}会员




