An integrated human organ-on-chip ultrasensitive miRNA detection platform for novel biomarker discovery

用于新型生物标志物发现的集成人体器官芯片超灵敏 miRNA 检测平台

基本信息

  • 批准号:
    10458616
  • 负责人:
  • 金额:
    $ 38.58万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-09-01 至 2023-07-31
  • 项目状态:
    已结题

项目摘要

Abstract Circulating miRNAs have proposed as specific biomarkers of disease states, including some of the most prevailing ones such as cardiovascular diseases and cancer. However using miRNAs as biomarkers is very challenging despite recent advances in high-throughput miRNA profiling. Various detection technologies, protocols, ligation and extraction/purification methods have led to varying miRNA profiling results of cells and biofluids under different conditions. Most importantly, all require days long sample-to-answer assay times, thus ruling them out for detection and monitoring of urgent, life threatening conditions such as myocardial infarction (MI). A rapid real-time, PCR-free miRNA-profiling device would be exceedingly valuable for precision, personalized medicine in years to come. However, it is very difficult to start even developing such a platform because of the limitations in testing models. Animal models often fail to predict responses in humans; and studies of human subjects do not readily allow for precise control over the disease events or temporal correlation of the disease state and biomarker expression dynamics. To address this challenge, in this study, we will develop an organ-on-a-chip device with an integrated attomolar (aM)-level miRNA sensing capability, which we will use for optimizing real-time monitoring of fluctuations in multiple miRNAs for novel biomarker discovery. As an immediate application, we will start with a human myocardium-on-chip (MoC) as a clinically relevant model and imitate the course of a heart attack. We hypothesize that using the MoC with ultrasensitive miRNA detection, we will discover a unique signature that indicates the onset of reperfusion injury during MI treatment. Finally, we will test the sensor device and the miRNA signature using clinical blood samples. Our microfluidic organ-on-a-chip platform will consist of four basic components: 1) the tissue engineered human MoC from human induced pluripotent stem cells (hiPSCs), 2) the exosome lysing unit, 3) the concentration unit for the lysed RNAs and 4) the detection unit for the miRNAs. In Aim 1, we will couple these components into a fully integrated microfluidic platform. First we will validate the clinical relevance of the MoC model by comparing with human tissue and blood samples. Then we will characterize and optimize the performance of a novel miRNA detection biosensor using MoC and benchmark it against established miRNA analysis techniques. In Aim 2 we will focus on multiplexing the sensing approach for the real-time detection of a panel of miRNAs, and 1) use the MoC to discover a miRNA signature to be used as a novel biomarker that captures the RI onset, as well as 2) to optimize the multiplexed sensor for faster clinical translation. In Aim 3 we will determine the diagnostic and prognostic capabilities of the novel biosensor and miRNA biomarker signature we developed in Aims 1 and 2 using the MoC model, with clinical samples from MI patients. Our long-term goal is to utilize this integrated platform to study exosomes and their RNA content to advance current understanding of their role in human health and to determine their potential as biomarkers for disease states.
摘要 循环中的miRNAs已经被认为是疾病状态的特定生物标记物,包括一些最 流行的疾病,如心血管疾病和癌症。然而,使用miRNAs作为生物标志物是非常重要的 尽管最近在高通量miRNA图谱方面取得了进展,但仍具有挑战性。各种检测技术, 方案、连接和提取/纯化方法导致了不同的细胞和 不同条件下的生物流体。最重要的是,所有这些都需要数天的样本到答案的分析时间,因此 排除它们用于检测和监测心肌梗死等危及生命的紧急情况 (Mi)。一种快速、实时、无聚合酶链式反应的miRNA分析设备在精确度方面将是非常有价值的, 未来几年的个性化医疗。然而,即使是开发这样一个平台也是非常困难的 由于测试模型的限制。动物模型往往无法预测人类的反应;研究 不容易允许精确控制疾病事件或疾病事件的时间相关性 疾病状态和生物标记物的表达动态。为了应对这一挑战,在这项研究中,我们将制定一种 具有集成的attomole(AM)级miRNA传感功能的芯片上器官设备,我们将使用该设备 优化实时监测多个miRNAs的波动,以发现新的生物标记物。作为一种 立即应用,我们将从人类芯片上的心肌(MOC)作为临床相关模型和 模仿心脏病发作的过程。我们假设,使用具有超灵敏miRNA检测的MOC,我们 将发现一个独特的信号,表明在心肌梗死治疗期间再灌注损伤的开始。最后,我们会 使用临床血液样本测试传感器设备和miRNA签名。我们的微流控芯片器官 该平台将由四个基本组成部分组成:1)从人类诱导的组织工程化人MOC 多能干细胞(HiPSCs),2)外体裂解单位,3)裂解RNA的浓缩单位,4) MiRNAs的检测单元。在目标1中,我们将这些组件耦合到完全集成的微流体中 站台。首先,我们将通过与人体组织和血液的比较来验证MOC模型的临床相关性 样本。然后,我们将表征和优化一种新型miRNA检测生物传感器的性能 并以成熟的miRNA分析技术为基准。在目标2中,我们将重点介绍多路传输 用于实时检测一组miRNA的传感方法,以及1)使用MOC来发现miRNA 签名将被用作捕捉RI起始的新型生物标志物,以及2)优化多路传输 传感器,用于更快的临床翻译。在目标3中,我们将确定诊断和预后能力 我们在AIMS 1和2中使用MOC模型开发的新型生物传感器和miRNA生物标志物签名,具有 心肌梗塞患者的临床标本。我们的长期目标是利用这个综合平台来研究外显体和 它们的RNA含量,以促进目前对它们在人类健康中的作用的理解,并确定它们的潜力 作为疾病状态的生物标志物。

项目成果

期刊论文数量(14)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Editorial: Adverse Reactions to Biomaterials: State of the Art in Biomaterial Risk Assessment, Immunomodulation and in vitro Models for Biomaterial Testing
Adipose stem cell secretome markedly improves rodent heart and human induced pluripotent stem cell-derived cardiomyocyte recovery from cardioplegic transport solution exposure.
脂肪干细胞分泌明显改善了啮齿动物心脏和人类诱导的多能干细胞衍生的心肌细胞从心脏倍毛转运溶液暴露中恢复。
  • DOI:
    10.1002/stem.3296
  • 发表时间:
    2021-03
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ellis BW;Traktuev DO;Merfeld-Clauss S;Can UI;Wang M;Bergeron R;Zorlutuna P;March KL
  • 通讯作者:
    March KL
An integrated ion-exchange membrane-based microfluidic device for irreversible dissociation and quantification of miRNA from ribonucleoproteins.
  • DOI:
    10.1039/d2lc00517d
  • 发表时间:
    2023-01-17
  • 期刊:
  • 影响因子:
    6.1
  • 作者:
    McCarthy, Kyle P.;Go, David B.;Senapati, Satyajyoti;Chang, Hsueh-Chia
  • 通讯作者:
    Chang, Hsueh-Chia
An Experimental and Numerical Investigation of Cardiac Tissue-Patch Interrelation
Quantifying PON1 on HDL with nanoparticle-gated electrokinetic membrane sensor for accurate cardiovascular risk assessment.
  • DOI:
    10.1038/s41467-023-36258-w
  • 发表时间:
    2023-02-02
  • 期刊:
  • 影响因子:
    16.6
  • 作者:
    Kumar, Sonu;Maniya, Nalin;Wang, Ceming;Senapati, Satyajyoti;Chang, Hsueh-Chia
  • 通讯作者:
    Chang, Hsueh-Chia
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Pinar Zorlutuna其他文献

Pinar Zorlutuna的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Pinar Zorlutuna', 18)}}的其他基金

Engineered hybrid aging model for disease progression
用于疾病进展的工程混合衰老模型
  • 批准号:
    10608767
  • 财政年份:
    2023
  • 资助金额:
    $ 38.58万
  • 项目类别:
An Engineered Tissue Model of Aged Mammary Microenvironment
衰老乳腺微环境的工程组织模型
  • 批准号:
    10378470
  • 财政年份:
    2019
  • 资助金额:
    $ 38.58万
  • 项目类别:
An Engineered Tissue Model of Aged Mammary Microenvironment
衰老乳腺微环境的工程组织模型
  • 批准号:
    9920718
  • 财政年份:
    2019
  • 资助金额:
    $ 38.58万
  • 项目类别:
An Engineered Tissue Model of Aged Mammary Microenvironment
衰老乳腺微环境的工程组织模型
  • 批准号:
    10090595
  • 财政年份:
    2019
  • 资助金额:
    $ 38.58万
  • 项目类别:
An integrated human organ-on-chip ultrasensitive miRNA detection platform for novel biomarker discovery
用于新型生物标志物发现的集成人体器官芯片超灵敏 miRNA 检测平台
  • 批准号:
    10226151
  • 财政年份:
    2018
  • 资助金额:
    $ 38.58万
  • 项目类别:
An integrated human organ-on-chip ultrasensitive miRNA detection platform for novel biomarker discovery
用于新型生物标志物发现的集成人体器官芯片超灵敏 miRNA 检测平台
  • 批准号:
    9769864
  • 财政年份:
    2018
  • 资助金额:
    $ 38.58万
  • 项目类别:

相似海外基金

Quantification of Neurovasculature Changes in a Post-Hemorrhagic Stroke Animal-Model
出血性中风后动物模型中神经血管变化的量化
  • 批准号:
    495434
  • 财政年份:
    2023
  • 资助金额:
    $ 38.58万
  • 项目类别:
Bioactive Injectable Cell Scaffold for Meniscus Injury Repair in a Large Animal Model
用于大型动物模型半月板损伤修复的生物活性可注射细胞支架
  • 批准号:
    10586596
  • 财政年份:
    2023
  • 资助金额:
    $ 38.58万
  • 项目类别:
A Comparison of Treatment Strategies for Recovery of Swallow and Swallow-Respiratory Coupling Following a Prolonged Liquid Diet in a Young Animal Model
幼年动物模型中长期流质饮食后吞咽恢复和吞咽呼吸耦合治疗策略的比较
  • 批准号:
    10590479
  • 财政年份:
    2023
  • 资助金额:
    $ 38.58万
  • 项目类别:
Small animal model for evaluating the impacts of cleft lip repairing scar on craniofacial growth and development
评价唇裂修复疤痕对颅面生长发育影响的小动物模型
  • 批准号:
    10642519
  • 财政年份:
    2023
  • 资助金额:
    $ 38.58万
  • 项目类别:
Diurnal grass rats as a novel animal model of seasonal affective disorder
昼夜草鼠作为季节性情感障碍的新型动物模型
  • 批准号:
    23K06011
  • 财政年份:
    2023
  • 资助金额:
    $ 38.58万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Longitudinal Ocular Changes in Naturally Occurring Glaucoma Animal Model
自然发生的青光眼动物模型的纵向眼部变化
  • 批准号:
    10682117
  • 财政年份:
    2023
  • 资助金额:
    $ 38.58万
  • 项目类别:
A whole animal model for investigation of ingested nanoplastic mixtures and effects on genomic integrity and health
用于研究摄入的纳米塑料混合物及其对基因组完整性和健康影响的整体动物模型
  • 批准号:
    10708517
  • 财政年份:
    2023
  • 资助金额:
    $ 38.58万
  • 项目类别:
A Novel Large Animal Model for Studying the Developmental Potential and Function of LGR5 Stem Cells in Vivo and in Vitro
用于研究 LGR5 干细胞体内外发育潜力和功能的新型大型动物模型
  • 批准号:
    10575566
  • 财政年份:
    2023
  • 资助金额:
    $ 38.58万
  • 项目类别:
Elucidating the pathogenesis of a novel animal model mimicking chronic entrapment neuropathy
阐明模拟慢性卡压性神经病的新型动物模型的发病机制
  • 批准号:
    23K15696
  • 财政年份:
    2023
  • 资助金额:
    $ 38.58万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
The effect of anti-oxidant on swallowing function in an animal model of dysphagia
抗氧化剂对吞咽困难动物模型吞咽功能的影响
  • 批准号:
    23K15867
  • 财政年份:
    2023
  • 资助金额:
    $ 38.58万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了