Multiplexed imaging of viral protein processing and assembly in live cells
活细胞中病毒蛋白加工和组装的多重成像
基本信息
- 批准号:10455219
- 负责人:
- 金额:$ 51.77万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-06 至 2023-07-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAffinityAlphavirusAntibodiesBindingBiochemistryBiogenesisBiological ProcessBiologyCapsidCapsid ProteinsCellsChimera organismChimeric ProteinsColorCommunitiesComplexComputersConsumptionCrystallizationDataDevelopmentDirected Molecular EvolutionEngineeringEnsureEpitopesEukaryotic CellFlavivirusGenetic MaterialsGenetic RecombinationGenomeHIV-1HandHomoHypersensitivityImageImaging DeviceImmunoglobulin FragmentsInfectionInvestigationKineticsLabelLeadLibrariesLifeLightMachine LearningMechanicsMicroscopyModelingMolecularMolecular BiologyMolecular VirologyMonitorPeptidesPhage DisplayPhotobleachingPolyproteinsPositioning AttributeProcessProtein DynamicsProtein EngineeringProteinsProtocols documentationReagentRecombinant ProteinsRefractoryReplication-Associated ProcessResearchResearch PersonnelRibosomesScientistSignal TransductionSpecificityTechnologyTestingTimeTranslationsValidationVariantViralViral ProteinsViral Structural ProteinsVirusVirus DiseasesVirus Replicationcostdesigndesign and constructionexperimental studyin vivoin vivo imaginglive cell imaginglive cell microscopymodel designmolecular dynamicsmolecular imagingmultiplexed imagingnext generationnon-invasive imagingnovelparticleprediction algorithmprotein structure predictionreal-time imagesscaffoldsingle moleculespatiotemporalsuccesstemporal measurementvirology
项目摘要
Project Summary
Imaging the full lifecycle of viral proteins in vivo is essential for understanding the molecular processes
underlying viral infection. Live-cell imaging has long been performed using fluorescent protein fusion tags such
as GFP. However, these tags can alter the size and function of targeted proteins. Furthermore, slow
maturation, degradation, and photobleaching of tags results in the loss of signal, making it difficult to track the
early life and ultimate fate of many proteins. Viral polyproteins, in particular, remain refractory to imaging in
vivo due to their hypersensitivity to tags and the extensive processing and assembly they undergo during viral
biogenesis. The use of linear epitope tags reversibly labeled by genetically encoded live-cell probes can solve
many of these issues. Unfortunately, engineering functional probes for live-cell imaging of epitopes has been
costly and time-consuming. In the proposed research, we combine expertise in protein engineering, single-
molecule microscopy, and biochemistry to refine and accelerate the rational design of orthogonal
epitope/probe pairs for highly multiplexed imaging of full viral protein lifecycles in living cells. We demonstrate
the power of our strategy in our Preliminary Data by creating novel scFvs that bind the commonly used HA and
Flag epitopes with high affinity in a variety of demanding live-cell imaging scenarios. In Aim 1, we will use our
tested strategy to develop scFv against additional viral epitope tags and validate their utility in imaging
experiments. To identify chimeric scFv that are both soluble and active within the cellular milieu, we will graft
known epitope-specific CDR loops onto a unique panel of stable scFv scaffolds. In Aim 2, we will use state-of-
the-art computational protein modeling and design to develop novel predictive binding models for scFv:viral-
epitope complexes, establish and test protocols for de novo scFv design, engineer large scFv libraries
encoding multiple new peptide-binding solutions, and screen using phage display. In Aim 3, we will
demonstrate the utility of our newly developed scFv in live-cell imaging experiments by probing several critical
aspects of viral biology. Specifically, we will use our engineered scFv to visualize and quantify the translation
dynamics of flavivirus transmembrane polyproteins, and to monitor alphavirus particle assembly kinetics.
Overall, this project will provide a powerful new pipeline for generating scFv proteins that can track viral
proteins in living cells. The reagents we generate will provide the virus molecular biology community with new,
versatile imaging tools to better illuminate many important biological processes.
项目摘要
成像体内病毒蛋白的完整生命周期对于理解分子过程至关重要
潜在的病毒感染。长期以来,使用荧光蛋白融合标签进行了活细胞成像
作为GFP。但是,这些标签可以改变目标蛋白的大小和功能。此外,慢
标签的成熟,降解和光漂白导致信号丢失,因此很难跟踪
许多蛋白质的早期生命和最终命运。尤其是病毒多蛋白仍然对成像的耐火性
体内由于其对标签的高敏性以及病毒期间经历的广泛处理和组装
生物发生。使用基因编码的活细胞探针可逆标记的线性表位标签可以解决
其中许多问题。不幸的是,用于表位的活细胞成像的工程功能探针已经
昂贵且耗时。在拟议的研究中,我们结合了蛋白质工程专业知识,单一的专业知识
分子显微镜和生物化学,以完善和加速正交的合理设计
活细胞中全病毒蛋白生命周期的高度多重成像的表位/探针对。我们证明
通过创建结合常用的HA和
在各种苛刻的活电池成像场景中具有高亲和力的旗帜表位。在AIM 1中,我们将使用我们的
测试的策略以开发针对其他病毒表位标签的SCFV并验证其成像的效用
实验。为了识别在细胞环境中既可溶性又活跃的嵌合SCFV,我们将移植
已知的表位特异性CDR循环循环到稳定的SCFV支架的独特面板上。在AIM 2中,我们将使用最新
ART计算蛋白建模和设计,以开发SCFV的新型预测结合模型:病毒
EPITOPE COPPLEES,建立和测试从头SCFV设计的协议,工程师大型SCFV库
编码多个新的肽结合解决方案,并使用噬菌体显示器进行屏幕。在AIM 3中,我们将
通过探测几个关键
病毒生物学方面。具体来说,我们将使用工程的SCFV可视化和量化翻译
黄病毒跨膜多蛋白的动力学,并监测α病毒颗粒组装动力学。
总体而言,该项目将为生成可以追踪病毒的SCFV蛋白提供强大的新管道
活细胞中的蛋白质。我们生成的试剂将为病毒分子生物学界提供新的,
多功能成像工具可以更好地阐明许多重要的生物学过程。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Single molecule imaging of the central dogma reveals myosin-2A gene expression is regulated by contextual translational buffering.
中心法则的单分子成像揭示肌球蛋白-2A 基因表达受上下文翻译缓冲调节。
- DOI:10.1101/2024.02.11.579797
- 发表时间:2024
- 期刊:
- 影响因子:0
- 作者:Wiggan,O'Neil;Stasevich,TimothyJ
- 通讯作者:Stasevich,TimothyJ
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Christopher Davis Snow其他文献
Christopher Davis Snow的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Christopher Davis Snow', 18)}}的其他基金
Multiplexed imaging of viral protein processing and assembly in live cells
活细胞中病毒蛋白加工和组装的多重成像
- 批准号:
10708987 - 财政年份:2022
- 资助金额:
$ 51.77万 - 项目类别:
Multiplexed imaging of viral protein processing and assembly in live cells
活细胞中病毒蛋白加工和组装的多重成像
- 批准号:
10587280 - 财政年份:2022
- 资助金额:
$ 51.77万 - 项目类别:
相似国自然基金
基于高亲和力糖基配体修饰的聚合物载体开发新型冠状病毒重组蛋白偶联疫苗
- 批准号:22377065
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
全新从头快速设计靶向COVID-19病毒及其突变株S蛋白超高亲和力阻断结合蛋白研究
- 批准号:
- 批准年份:2022
- 资助金额:51 万元
- 项目类别:面上项目
TCR-pMHC 亲和力调控的CD8+T细胞功能分化异常与慢性乙肝病毒感染
- 批准号:81871226
- 批准年份:2018
- 资助金额:57.0 万元
- 项目类别:面上项目
HIV-1交叉抗体10E8/iMab中和病毒的作用机制
- 批准号:31670945
- 批准年份:2016
- 资助金额:60.0 万元
- 项目类别:面上项目
结构生物学指导的HBV治疗性抗体人源化及其关键技术研究
- 批准号:31600748
- 批准年份:2016
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Targeting Viroporins and Coronavirus M Protein
靶向病毒孔蛋白和冠状病毒 M 蛋白
- 批准号:
10512629 - 财政年份:2022
- 资助金额:
$ 51.77万 - 项目类别:
Multiplexed imaging of viral protein processing and assembly in live cells
活细胞中病毒蛋白加工和组装的多重成像
- 批准号:
10708987 - 财政年份:2022
- 资助金额:
$ 51.77万 - 项目类别:
Discovery and Optimization of Inhibitors of SARS-CoV-2 Polymerase and Exonuclease
SARS-CoV-2聚合酶和核酸外切酶抑制剂的发现和优化
- 批准号:
10513924 - 财政年份:2022
- 资助金额:
$ 51.77万 - 项目类别:
Multiplexed imaging of viral protein processing and assembly in live cells
活细胞中病毒蛋白加工和组装的多重成像
- 批准号:
10587280 - 财政年份:2022
- 资助金额:
$ 51.77万 - 项目类别: