EXPLOITING PATTERNS OF GENE ESSENTIALITY IN HUMAN CELLS TO PREDICT GENE FUNCTION, SYNTHETIC LETHALITY, AND CANCER TARGETS
利用人类细胞中的基因必需性模式来预测基因功能、综合致死率和癌症靶标
基本信息
- 批准号:10456051
- 负责人:
- 金额:$ 39.93万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-08-01 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:AdoptedAlgorithmsBenchmarkingBiologicalBiological AssayBiological ModelsBiological ProcessBiologyBuffersCRISPR screenCRISPR/Cas technologyCancer CenterCell LineCell LineageCell ProliferationCellsClustered Regularly Interspaced Short Palindromic RepeatsCodeDataEnvironmentEssential GenesEvolutionFoundationsFruitGene MutationGenesGeneticGenetic Predisposition to DiseaseGenomeGenotypeGoalsGoldHumanInformaticsKnock-outLibrariesMalignant NeoplasmsMalignant neoplasm of pancreasModelingMutationNetwork-basedPatternPharmaceutical PreparationsPhenotypePlayPositioning AttributeProcessProteinsPublishingReagentRoleSourceSurveysSystemTumor SubtypeUrsidae FamilyVariantYeastscancer cellcostdesignfitnessfunctional genomicsgene functiongene interactionknockout geneloss of functionmutantneoplastic cellparalogous genepost-doctoral trainingprofessorscreeningsynthetic genomicstool
项目摘要
Project summary/abstract
Essential genes are fundamental to genetics and functional genomics. Systematic knockout studies in
yeast defined the first complete set of genes essential for cellular proliferation, and subsequent surveys of how
gene essentiality varied across environmental and genetic backgrounds revealed foundational principles of
functional genomics: that “synthetic lethality” arises when one gene becomes essential in the presence of
another gene's mutation or loss of function, and that genes operating in the same biological processes tend to
have the same loss-of-function phenotypes when assayed across diverse backgrounds.
The adaptation of the CRISPR/Cas9 system to humans has rendered our genome tractable, and in my
postdoctoral training and in my current position as Assistant Professor at MD Anderson Cancer Center, I have
made fundamental contributions advances in CRISPR screening. I led the first gene knockout study to identify
both core and context-specific essential genes in cancer cells (Hart et al., Cell, 2015), and led the informatics
effort that identified FZD5 as a specific vulnerability in RNF43-mutant pancreatic cancer (Steinhart et al., Nat
Med, 2017). I designed all CRISPR reagents used in these studies, and subsequently integrated empirical data
across many published screens to create a much smaller, vastly more efficient library (TKOv3; available on
Addgene). My lab has advanced the state of the art in CRISPR informatics by developing algorithms to classify
essential genes and to identify drug-gene interactions, and we have defined benchmarks of gold-standard
essential and nonessential genes that have been adopted by every major screening study.
The CRISPR screening effort in human cells is beginning to bear fruit, with high-quality data available
from hundreds of cell lines. We seek to apply our combined expertise in integrative analysis and high-
throughput biology to explore questions about the variation in gene essentiality across cellular lineage,
genotype, and environment. As with yeast, groups of genes with similar knockout fitness profiles are likely
involved in the same biological processes, providing an avenue for deciphering gene function. One-third of all
protein-coding genes are constitutively and invariantly expressed, yet half of these show no knockout
phenotype. Many are likely buffered by paralogs, potentially a rich source of synthetic lethal interactions. Core
essentials, required in every cell, are more sensitive to perturbation when hemizygously deleted in cancer
cells, which may help explain from first principles the fitness constraints on copy number rearrangement in
cancer cells. Globally, patterns of shared genetic vulnerability are likely to reveal unexpected tumor subtypes,
a key goal of our data-driven, network-based integrative analytical approach. Finally, we seek a predictive,
process-level model of gene essentiality that can explain variations across lineage and genotype, and that
further can be used to develop reduced-representation CRISPR reagents that enable high-information, low-
cost screening approaches for more focused biological applications.
项目总结/文摘
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Glen Traver Hart其他文献
C17orf53 defines a novel pathway involved in inter-strand crosslink repair
C17orf53 定义了一条参与链间交联修复的新途径
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Chao Wang;Zhen Chen;Dan Su;Mengfan Tang;Litong Nie;Huimin Zhang;Xu Feng;Rui Wang;Xi Shen;Mrinal Srivastava;Megan E. McLaughlin;Glen Traver Hart;Lei Li;Junjie Chen - 通讯作者:
Junjie Chen
Glen Traver Hart的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Glen Traver Hart', 18)}}的其他基金
Deciphering the hierarchical modularity of the mammalian cell through network integration and complex genetic perturbation strategies
通过网络整合和复杂的遗传扰动策略破译哺乳动物细胞的层次模块化
- 批准号:
10551527 - 财政年份:2018
- 资助金额:
$ 39.93万 - 项目类别:
EXPLOITING PATTERNS OF GENE ESSENTIALITY IN HUMAN CELLS TO PREDICT GENE FUNCTION, SYNTHETIC LETHALITY, AND CANCER TARGETS
利用人类细胞中的基因必需性模式来预测基因功能、综合致死率和癌症靶标
- 批准号:
10225442 - 财政年份:2018
- 资助金额:
$ 39.93万 - 项目类别:
EXPLOITING PATTERNS OF GENE ESSENTIALITY IN HUMAN CELLS TO PREDICT GENE FUNCTION, SYNTHETIC LETHALITY, AND CANCER TARGETS
利用人类细胞中的基因必需性模式来预测基因功能、综合致死率和癌症靶标
- 批准号:
9751348 - 财政年份:2018
- 资助金额:
$ 39.93万 - 项目类别:
相似海外基金
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 39.93万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 39.93万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 39.93万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 39.93万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 39.93万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 39.93万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 39.93万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 39.93万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 39.93万 - 项目类别:
Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 39.93万 - 项目类别:
Research Grant