Precision Medicine Approach to Exercise-Based Interventions for Veterans with Knee Osteoarthritis
对患有膝骨关节炎的退伍军人进行基于运动的干预的精准医学方法
基本信息
- 批准号:10640577
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2025-02-28
- 项目状态:未结题
- 来源:
- 关键词:ArthritisCaringCharacteristicsDataDegenerative polyarthritisDevelopmentEffectivenessEvidence based interventionExerciseFoundationsFundingGoalsHealth Services AccessibilityHealth educationHealthcareHealthcare SystemsHeterogeneityHomeHuman ResourcesIndividualInterventionKnee OsteoarthritisMachine LearningMeasurementMeasuresMethodologyMethodsMissionModelingNatureOutpatientsPainParticipantPatientsPersonsPhysical MedicinePhysical RehabilitationPhysical therapyProcessQuality of CareQuality of lifeRandomized, Controlled TrialsReportingResearchResourcesRural HealthScienceSelf DirectionServicesSymptomsTestingTreatment outcomeTreesUnited States Department of Veterans AffairsVeteransVeterans Health AdministrationWestern Ontario and McMaster Universities Arthritis IndexWorkarmclinically relevantcostcost effectivenessdesigndisabilityeffectiveness testingexercise interventionexercise programexperienceimprovedindexingindividual patientinnovationmachine learning algorithmmachine learning modelnovelopioid usepatient orientedpatient subsetspragmatic trialprecision medicineprogramsrandomized, clinical trialsrehabilitation serviceresponsestandard of caresupervised learningtreatment effecttreatment guidelinestreatment strategytrial comparing
项目摘要
Background: Knee osteoarthritis (OA) is a leading cause of pain and disability, and Veterans have markedly
greater rates than non-Veterans. Exercise is a core component of care for knee OA, associated with modest
average improvements in pain and function. However, there is tremendous variability in the degree of
improvement individual patients experience following exercise-based interventions for knee OA. Further, there
are different types of exercise-based interventions for knee OA, ranging from self-directed programs to
individual physical therapy (PT), and it is likely that any given patient will not experience the same magnitude
of response to each of these different approaches. The overall objective of our research is to improve the
effectiveness, efficiency and patient-centeredness of exercise-based services for Veterans with knee OA
through a precision medicine approach that matches the intervention type with key patient characteristics.
Significance / Impact: There is currently no guidance or evidence regarding which patients benefit most from
different exercise-based interventions for knee OA. Thus, there is no clarity regarding which patients should
be directed to different types of exercise-based services.
Innovation: This will be the first study to examine heterogeneity of treatment effects in the context of different
exercise-based interventions among Veterans with knee OA. Methods will involve novel, robust machine
learning analyses.
Specific Aims: 1. Develop a precision medicine treatment strategy that optimizes improvement in pain,
stiffness and function, measured by the Western Ontario and McMaster Universities Osteoarthritis Index
(WOMAC), by tailoring exercise-based treatment to individual patients with knee OA. Aim 1.a. Use a causal
inference-based machine learning (ML) approach to estimate patient-specific estimates of treatment outcomes
(improvement in WOMAC scores) for each of the four treatments (Group PT, Individual PT, STEP-KOA, and
health education control). Aim 1.b. Apply uplift tree ML modeling to produce an interpretable tree-based model
for optimal assignment of treatment for knee OA. Aim 2. Apply results of ML analyses, along with a robust
partner-engaged development process, to design a randomized clinical trial (RCT) that will test the
effectiveness and cost-effectiveness of a precision medicine approach to delivering exercise-based
interventions to Veterans with knee OA.
Methodology: This project will involve analysis of two VA RCTs. One RCT compared Group vs. Individual PT
and found comparable overall mean improvements in pain and function. The second RCT examined the STEP-
KOA intervention, which begins with home-based exercise and progresses to PT only if participants do not
make clinically relevant improvements; STEP-KOA was also associated with mean improvements in pain and
function. Individual PT, Group PT, and STEP-KOA are all evidence-based interventions for knee OA, varying
in the amount and type of support provided to patients and therefore the associated costs to the VA. We are
preparing to scale Group PT and STEP-KOA in the VA. However, because Veterans in our RCTs varied
substantially in their degree of improvement following these interventions, we believe these programs will
ultimately be of much higher value to the VA and Veterans if we are able to target their delivery using a
precision medicine approach. In this project, we will apply robust ML approaches to uncover subgroups of
patients who benefit most (and least) from Individual PT, Group PT and STEP-KOA.
Next Steps / Implementation: Study results will directly inform an RCT that will test whether a precision
medicine approach is more effective than a “one size fits all” approach. Specifically, we plan for a 2-arm
pragmatic trial that will compare Individual PT for all patients (current standard of care) with a precision
medicine arm that assigns patients to one of three exercise-based interventions, based on key characteristics.
背景:膝骨关节炎 (OA) 是疼痛和残疾的主要原因,退伍军人明显患有膝骨关节炎 (OA)。
比非退伍军人更高的比率。运动是膝关节 OA 护理的核心组成部分,与适度的锻炼相关
疼痛和功能的平均改善。但其程度存在巨大差异
通过基于运动的膝关节骨关节炎干预措施,个体患者的体验得到改善。此外,还有
是针对膝关节 OA 的不同类型的基于运动的干预措施,范围从自我指导计划到
个体物理治疗 (PT),任何特定患者都可能不会经历相同程度的治疗
对每种不同方法的反应。我们研究的总体目标是改善
为患有膝骨关节炎的退伍军人提供基于运动的服务的有效性、效率和以患者为中心
通过将干预类型与关键患者特征相匹配的精准医学方法。
意义/影响:目前没有关于哪些患者从中受益最多的指导或证据
针对膝关节骨关节炎的不同基于运动的干预措施。因此,尚不清楚哪些患者应该
针对不同类型的基于运动的服务。
创新:这将是第一项研究不同背景下治疗效果异质性的研究
对患有膝骨关节炎的退伍军人进行基于运动的干预。方法将涉及新颖、坚固的机器
学习分析。
具体目标: 1. 制定精准医疗治疗策略,优化疼痛改善,
硬度和功能,通过西安大略大学和麦克马斯特大学骨关节炎指数测量
(WOMAC),通过为膝关节骨关节炎患者量身定制基于运动的治疗。目标 1.a.使用因果关系
基于推理的机器学习 (ML) 方法来估计患者特定的治疗结果估计值
四种治疗(组 PT、个体 PT、STEP-KOA 和
健康教育控制)。目标 1.b。应用提升树 ML 建模来生成可解释的基于树的模型
膝关节骨关节炎治疗的最佳分配。目标 2. 应用机器学习分析的结果以及稳健的
合作伙伴参与的开发流程,设计一项随机临床试验(RCT)来测试
精准医学方法提供基于运动的有效性和成本效益
对患有膝骨关节炎的退伍军人进行干预。
方法:该项目将涉及两项 VA RCT 的分析。一项随机对照试验比较了组与个体 PT
并发现疼痛和功能的整体平均改善具有可比性。第二个 RCT 检查了 STEP-
KOA 干预,从家庭锻炼开始,只有当参与者不这样做时才进行 PT
进行临床相关的改进; STEP-KOA 还与疼痛和疼痛的平均改善有关
功能。个体 PT、团体 PT 和 STEP-KOA 都是针对膝关节 OA 的循证干预措施,各有不同
向患者提供的支持的数量和类型,以及退伍军人管理局的相关费用。我们是
准备在 VA 扩大 Group PT 和 STEP-KOA。然而,由于我们的随机对照试验中的退伍军人各不相同
就这些干预措施后的改善程度而言,我们相信这些计划将
如果我们能够利用
精准医学方法。在这个项目中,我们将应用强大的机器学习方法来发现子组
从个体 PT、团体 PT 和 STEP-KOA 中获益最多(和最少)的患者。
后续步骤/实施:研究结果将直接告知随机对照试验,该随机对照试验将测试精度是否
医学方法比“一刀切”方法更有效。具体来说,我们计划使用 2 臂
实用性试验,将比较所有患者的个体 PT(当前护理标准)与精确度
医学部门根据关键特征为患者分配三种基于运动的干预措施之一。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kelli D. Allen其他文献
Core and adjunctive interventions for osteoarthritis: efficacy and models for implementation
骨关节炎的核心和辅助干预措施:疗效和实施模型
- DOI:
10.1038/s41584-020-0447-8 - 发表时间:
2020-07-13 - 期刊:
- 影响因子:32.700
- 作者:
Jocelyn L. Bowden;David J. Hunter;Leticia A. Deveza;Vicky Duong;Krysia S. Dziedzic;Kelli D. Allen;Ping-Keung Chan;Jillian P. Eyles - 通讯作者:
Jillian P. Eyles
Relationships Between Applied Mindfulness Practice, Chronic Pain, and Pain-Related Functioning in Veterans
- DOI:
10.1016/j.jpain.2024.104648 - 发表时间:
2024-11-01 - 期刊:
- 影响因子:
- 作者:
Collin M. Calvert;Alex Haley;Emily M. Hagel Campbell;Ann Bangerter;Brent C. Taylor;Mariah Branson;Lee J.S. Cross;Kelli D. Allen;John E. Ferguson;Jessica Friedman;Laura A. Meis;Diana J. Burgess - 通讯作者:
Diana J. Burgess
052 - THE OARSI JOINT EFFORT INITIATIVE’S PRIORITIES FOR OSTEOARTHRITIS MANAGEMENT PROGRAM IMPLEMENTATION AND RESEARCH 2024-2028
- DOI:
10.1016/j.joca.2024.02.063 - 发表时间:
2024-04-01 - 期刊:
- 影响因子:
- 作者:
Jocelyn L. Bowden;David Hunter;Kathryn Mills;Kelli D. Allen;Kim Bennell;Andrew M. Briggs;Krysia S. Dziedzic;Rana S. Hinman;Jason Kim;Nina Martinez;Jonathan G. Quicke;Bryan Y. Tan;Martin van der Esch;Josep Verges;Jillian P. Eyles - 通讯作者:
Jillian P. Eyles
Non-Pharmacological Pain Management for Osteoarthritis: Review Update
- DOI:
10.1007/s11926-025-01185-w - 发表时间:
2025-02-19 - 期刊:
- 影响因子:3.900
- 作者:
Kelli D. Allen;Kirsten R. Ambrose;Staja Q. Booker;Ashley N. Buck;Katie F. Huffman - 通讯作者:
Katie F. Huffman
Massage for knee osteoarthritis
- DOI:
10.1016/j.imr.2015.04.177 - 发表时间:
2015-05-01 - 期刊:
- 影响因子:
- 作者:
Kristin Jerger;Michael Juberg;Kelli D. Allen;Natalia O. Dmitrieva;Teresa Keever;Adam I. Perlman - 通讯作者:
Adam I. Perlman
Kelli D. Allen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kelli D. Allen', 18)}}的其他基金
Optimizing Osteoarthritis Care through Clinical and Community Partnership
通过临床和社区合作优化骨关节炎护理
- 批准号:
10540758 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Optimizing Osteoarthritis Care through Clinical and Community Partnership
通过临床和社区合作优化骨关节炎护理
- 批准号:
10360820 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Improving physical activity and gait symmetry after total knee arthroplasty
全膝关节置换术后改善体力活动和步态对称性
- 批准号:
10399876 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Improving physical activity and gait symmetry after total knee arthroplasty
全膝关节置换术后改善体力活动和步态对称性
- 批准号:
9904486 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Physical Activity Pathway for Patients with Osteoarthritis in Primary Care
初级保健中骨关节炎患者的身体活动途径
- 批准号:
10228765 - 财政年份:2018
- 资助金额:
-- - 项目类别:
相似海外基金
A self-guided and monitored innovative AI-driven parental support intervention (mobile app), for families caring for a young one that self-harms: feasibility study
一种自我指导和监控的创新型人工智能驱动的家长支持干预措施(移动应用程序),适用于照顾自残儿童的家庭:可行性研究
- 批准号:
10101171 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Collaborative R&D
Caring Communities 1800-present: Rethinking Children's Social Care
关爱社区 1800 年至今:重新思考儿童的社会关怀
- 批准号:
MR/X034968/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Fellowship
Conference: Caring for the Future: Empathy in Engineering Education
会议:关爱未来:工程教育中的同理心
- 批准号:
2418876 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
When caring ends: Understanding and supporting informal care trajectories
当护理结束时:理解和支持非正式护理轨迹
- 批准号:
LP220100209 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Linkage Projects
Who is Caring for the Caregiver? Understanding Quality of Life and Mental Health Outcomes in Caregivers of Persons with Brain Injury
谁在照顾看护者?
- 批准号:
492369 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Operating Grants
Intergenerational conversations in contemporary performance: conflict, caring and the earth crisis
当代表演中的代际对话:冲突、关怀和地球危机
- 批准号:
2887471 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Studentship
Caring for Providers to Improve Patient Experience (CPIPE) Study
关爱医疗服务提供者以改善患者体验 (CPIPE) 研究
- 批准号:
10556284 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Evaluation of the Caring Letters Suicide Prevention Intervention after Removal of an Electronic Health Record Flag for Suicide Risk: An Effectiveness-Implementation Hybrid Type 2 Trial
移除电子健康记录自杀风险标记后关怀信自杀预防干预的评估:有效性-实施混合 2 型试验
- 批准号:
10753299 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Co-creating a new model of long-term care home for older adults experiencing homelessness: Long-term Caring
为无家可归的老年人共同打造长期护理院新模式:长期关怀
- 批准号:
490004 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Operating Grants
Developing cultural competency training for app-based peer supporters caring for Canadian public safety personnel
为照顾加拿大公共安全人员的基于应用程序的同伴支持者开发文化能力培训
- 批准号:
488193 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Operating Grants














{{item.name}}会员




