Investigation of fmnl2 in cerebellar development
fmnl2 在小脑发育中的研究
基本信息
- 批准号:10641755
- 负责人:
- 金额:$ 4.14万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-06-02 至 2026-06-01
- 项目状态:未结题
- 来源:
- 关键词:3&apos Splice SiteActinsAffectAllelesAnteriorAtaxiaAxonBehaviorBindingBrainBrain DiseasesBrain regionCandidate Disease GeneCell surfaceCellsCerebellar DiseasesCerebellar malformationCerebellar vermis structureCerebellumChemicalsCiliaCilium MicrotubuleCognitive deficitsComplementCritical PathwaysCultured CellsCytoskeletonDataDefectDevelopmentDevelopmental Delay DisordersDiseaseExonsFMNL2 geneFailureFamilyFilopodiaFossaFunctional disorderGenesHippocampusHumanHuman DevelopmentInduced MutationInvestigationJoubert syndromeKidneyKnockout MiceLaboratory FindingLengthLinkLiverMaintenanceMedialMicrotubule StabilizationMicrotubulesMolecularMorphologyMotorMusMutagenesisMutant Strains MiceMutationNerve DegenerationNervous SystemNeurodevelopmental DisorderNeurologicNeuronsOpticsPatientsPhenotypePlayPoint MutationPolymersProliferatingProtein FamilyProteinsRNA SplicingRegulationRoleSHH geneSequence AnalysisSignal TransductionSignaling ProteinSkeletal systemStructureSystemTranscriptbasebrain abnormalitiescancer cellcell typeciliopathycilium biogenesisconditional knockoutexon skippingexperimental studyforward geneticsfunctional statusgenetic approachgranule cellhuman diseasein vivoinsightkinetosomemalformationmigrationmouse modelmutantnerve stem cellnovelpolymerizationpositional cloningprotein functionrare genetic disorderscaffoldscreeningsocial deficitstrafficking
项目摘要
PROJECT SUMMARY
Congenital ataxias generally result from dysfunctions and malformations of the cerebellum, particularly the
medial vermis. These disorders may result from the lack of proper developmental signaling cascades which
dictate the proliferation and formation of neurons. Primary cilia provide a hub for various developmental signaling
proteins such as SHH or WNT. Dysfunction in ciliary proteins leads to rare genetic disorders affecting human
development in the nervous system, optical system, and liver, kidney, and skeletal systems. Patients with
ciliopathies like Joubert Syndrome and related disorders display cerebellar vermis hypoplasia, thickened superior
cerebellar peduncles, and a deepened interpeduncular fossa. Components of the cytoskeleton, such as actin
and microtubules, play a vital role in ciliogenesis and the maintenance of existing ciliary components and
supporting scaffold. Although many cilia-related genes have been found to be causal for these disorders,
cytoskeletal regulators of the formin family and their relationship with cilia has not yet been fully defined, nor
have these molecules been previously associated with abnormal brain development.
Our lab uses a forward genetic approach to identify pathways critical to cerebellar development and degeneration
of neurons in this brain region. Through a chemical mutagenesis screening, we discovered an ataxic mouse
mutant with phenotypes similar to those observed in some ciliopathies: cerebellar hippocampal hypoplasia,
abnormal foliation, cerebellar elongation along the anterior-posterior axis, as well as the failure of the superior
cerebellar peduncle to decussate. By positional cloning, we identified a mutation at a splice acceptor in Fmnl2,
leading to exon skipping in Fmnl2 transcripts. Interestingly, levels of Fmnl2 transcripts in the brain of mutant mice
are unchanged compared to WT, but protein levels are reduced, suggesting that the in-frame deletion encoded
by this exon are necessary for stability of this protein.
FMNL2 is an autoinhibited cytoskeletal effector that has been previously shown to drive actin polymerization at
filopodia and lamellipodia tips of cultured cells. Although other proteins in this family have shown to bind and
regulate microtubules, actin, and influence cilia formation, whether this protein functions in microtubules and
actin during brain development is unknown. Using this novel mouse model, I will investigate the role of FMNL2
in actin and microtubule stabilization and determine how the hypomorphic loss of this protein may impact
ciliogenesis and cilia maintenance. These studies will enlighten our understanding of cerebellar malformations
and impact our understanding of the mechanisms underlying the role of microtubules and actin in human
ciliopathies.
项目总结
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Joyce Tran其他文献
Joyce Tran的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Mechanisms of Splice Site Selection in Health and Disease
健康和疾病中剪接位点选择的机制
- 批准号:
10797554 - 财政年份:2023
- 资助金额:
$ 4.14万 - 项目类别:
Quantitative and Predictive Analysis of 5' Splice Site Recognition by U1 snRNP using Massively Parallel Arrays
使用大规模并行阵列对 U1 snRNP 5 剪接位点识别进行定量和预测分析
- 批准号:
10460136 - 财政年份:2021
- 资助金额:
$ 4.14万 - 项目类别:
Quantitative and Predictive Analysis of 5' Splice Site Recognition by U1 snRNP using Massively Parallel Arrays
使用大规模并行阵列对 U1 snRNP 5 剪接位点识别进行定量和预测分析
- 批准号:
10311645 - 财政年份:2021
- 资助金额:
$ 4.14万 - 项目类别:
Uncovering Mechanisms of 5' Splice Site Fidelity
揭示 5 剪接位点保真度的机制
- 批准号:
10532793 - 财政年份:2020
- 资助金额:
$ 4.14万 - 项目类别:
Mechanism of Splice Site Recognition by the U2AF/SF1 Protein Complex
U2AF/SF1 蛋白复合物的剪接位点识别机制
- 批准号:
553974-2020 - 财政年份:2020
- 资助金额:
$ 4.14万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
How do RNA-binding proteins control splice site selection?
RNA 结合蛋白如何控制剪接位点选择?
- 批准号:
BB/T000627/1 - 财政年份:2020
- 资助金额:
$ 4.14万 - 项目类别:
Research Grant
Uncovering Mechanisms of 5' Splice Site Fidelity
揭示 5 剪接位点保真度的机制
- 批准号:
10316181 - 财政年份:2020
- 资助金额:
$ 4.14万 - 项目类别:
Mechanisms of Splice Site Selection in Health and Disease
健康和疾病中剪接位点选择的机制
- 批准号:
10769989 - 财政年份:2019
- 资助金额:
$ 4.14万 - 项目类别:
Mechanisms of Splice Site Selection in Health and Disease
健康和疾病中剪接位点选择的机制
- 批准号:
10808389 - 财政年份:2019
- 资助金额:
$ 4.14万 - 项目类别:
Mechanisms of Splice Site Selection in Health and Disease
健康和疾病中剪接位点选择的机制
- 批准号:
10585911 - 财政年份:2019
- 资助金额:
$ 4.14万 - 项目类别:














{{item.name}}会员




