Development of a web-based predictive model of nanoparticle delivery to tumors by integrating physiologically-based pharmacokinetic modeling with artificial intelligence
通过将基于生理学的药代动力学模型与人工智能相结合,开发基于网络的纳米粒子递送至肿瘤的预测模型
基本信息
- 批准号:10640223
- 负责人:
- 金额:$ 34.87万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-01 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:AccelerationAccountingAddressAnimal ExperimentationAnimalsAntineoplastic AgentsArtificial IntelligenceArtificial nanoparticlesBayesian AnalysisBiodistributionBreast OsteosarcomaCancer PatientChemicalsClinicalComputer ModelsDataData SetDatabasesDependenceDevelopmentDiagnosisDiameterDoseDrug Delivery SystemsDrug FormulationsDrug KineticsDrug TargetingDrug or chemical Tissue DistributionEnsureExcretory functionExperimental DesignsFemaleFormulationHumanKnowledgeLaboratory StudyMalignant NeoplasmsMarkov ChainsMarkov chain Monte Carlo methodologyMedicalMetabolismMethodsModelingMusNeural Network SimulationOnline SystemsOrganOutcomeOutputParameter EstimationPhysiologicalProcessPropertyPublic HealthPublicationsPublishingResearchResearch PersonnelRodentSex DifferencesSite-Directed MutagenesisStatistical MethodsSubgroupTechnologyTestingTrainingTranslationsUncertaintyabsorptionartificial intelligence methodartificial neural networkcancer therapyclinical translationdesignexperimental studygraphical user interfaceimprovedinterestmachine learning methodmalemalignant breast neoplasmmathematical methodsnanonanoGoldnanomedicinenanoparticlenanoparticle deliverynovelnovel therapeuticspharmacokinetic modelphysiologically based pharmacokineticspredictive modelingsexspecies differencesuccesstooltumoruser-friendlyweb based interfacezeta potential
项目摘要
PROJECT SUMMARY AND ABSTRACT
Many studies have shown that nanoparticle (NP)-based drug formulations are effective in the diagnosis and
treatment of cancer in lab animals, but the translation of animal results to clinical success is low. This is partly
due to two fundamental challenges in this field, which are low delivery efficiency of NPs to the tumor and lack
of a robust computational model to account for NP pharmacokinetic (PK) differences across species and thus
allow one to predict tumor delivery and extrapolate the results from animals to humans. The objective of this
proposal is to develop a robust, validated, and predictive generic physiologically based pharmacokinetic (PBPK)
model for NPs in male and female tumor-bearing mice. Our hypothesis is that tissue distribution and tumor
delivery of different NPs can be predicted with a generic PBPK model by training with hundreds of datasets
with advanced mathematical methods, such as Bayesian-based Markov chain Monte Carlo (MCMC)
simulations and/or artificial neural network (ANN) methods using species- and sex-specific physiological and
NP-specific physicochemical parameters. Three specific aims were designed to achieve this objective. Aim 1:
To develop a Bayesian-based robust generic PBPK model for NPs in male and female tumor-bearing mice.
Aim 2: To develop a Bayesian-based robust and predictive generic PBPK model for NPs in male and female
tumor-bearing mice by incorporating artificial intelligence. Aim 3: To validate and optimize the Bayesian-PBPK-
ANN model with new experimental data and convert it to a web-based interface. In Aim 1, a Bayesian-MCMC
method will be used to ensure model parameters are rigorously optimized and unbiased. In Aim 2, we will test
the hypothesis that incorporation of artificial intelligence methods, such as ANN will significantly improve the
prediction accuracy, efficiency, and applicable domain of the Bayesian-PBPK model. In Aim 3, we will conduct
PK and tissue distribution experiments in tumor-bearing mice to validate our model. Recently, we published a
simple PBPK model for NPs in tumor-bearing mice and a Nano-Tumor Database that contains 376 datasets.
These studies make this proposal highly feasible. This project is novel because: (1) it is a new application of
Bayesian-MCMC and ANN methods in cancer nanomedicine; (2) it provides a tool to compare potential sex
differences in NP tumor delivery; (3) the model will be “predictive”, which makes it different from previous
studies that were mostly “correlative” analysis; and (4) the model will be converted to a web-based interface to
facilitate its application to a wider audience. This project is significant since it addresses a crucial problem of
low delivery efficiency of cancer nanomedicines, which has been a critical barrier to progress over the last 20
years. This project has broad impacts because it will greatly improve our fundamental understanding of the key
factors of NP tumor delivery and any potential sex-dependence, and will provide a tangible tool to improve the
design of NPs with higher tumor delivery efficiency to accelerate clinical translation of cancer nanomedicines
from animals to humans, and also reduce/eliminate animal experimentation in nanomedicine studies.
项目总结与摘要
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Pharmacokinetics and tumor delivery of nanoparticles.
- DOI:10.1016/j.jddst.2023.104404
- 发表时间:2023-04
- 期刊:
- 影响因子:5
- 作者:L. Yuan;Qiran Chen;J. Riviere;Zhoumeng Lin
- 通讯作者:L. Yuan;Qiran Chen;J. Riviere;Zhoumeng Lin
Impact of protein coronas on nanoparticle interactions with tissues and targeted delivery.
- DOI:10.1016/j.copbio.2023.103046
- 发表时间:2023-12
- 期刊:
- 影响因子:7.7
- 作者:Wei-Chun Chou;Zhoumeng Lin
- 通讯作者:Wei-Chun Chou;Zhoumeng Lin
Predicting Nanoparticle Delivery to Tumors Using Machine Learning and Artificial Intelligence Approaches.
- DOI:10.2147/ijn.s344208
- 发表时间:2022
- 期刊:
- 影响因子:8
- 作者:Lin Z;Chou WC;Cheng YH;He C;Monteiro-Riviere NA;Riviere JE
- 通讯作者:Riviere JE
Development of a multi-route physiologically based pharmacokinetic (PBPK) model for nanomaterials: a comparison between a traditional versus a new route-specific approach using gold nanoparticles in rats.
- DOI:10.1186/s12989-022-00489-4
- 发表时间:2022-07-08
- 期刊:
- 影响因子:10
- 作者:Chou, Wei-Chun;Cheng, Yi-Hsien;Riviere, Jim E.;Monteiro-Riviere, Nancy A.;Kreyling, Wolfgang G.;Lin, Zhoumeng
- 通讯作者:Lin, Zhoumeng
Integration of In Vitro and In Vivo Models to Predict Cellular and Tissue Dosimetry of Nanomaterials Using Physiologically Based Pharmacokinetic Modeling.
- DOI:10.1021/acsnano.2c07312
- 发表时间:2022-12-27
- 期刊:
- 影响因子:17.1
- 作者:Lin, Zhoumeng;Aryal, Santosh;Cheng, Yi-Hsien;Gesquiere, Andre J.
- 通讯作者:Gesquiere, Andre J.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zhoumeng Lin其他文献
Zhoumeng Lin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Zhoumeng Lin', 18)}}的其他基金
Development of a web-based predictive model of nanoparticle delivery to tumors by integrating physiologically-based pharmacokinetic modeling with artificial intelligence
通过将基于生理学的药代动力学模型与人工智能相结合,开发基于网络的纳米粒子递送至肿瘤的预测模型
- 批准号:
10180594 - 财政年份:2021
- 资助金额:
$ 34.87万 - 项目类别:
Development of a web-based predictive model of nanoparticle delivery to tumors by integrating physiologically-based pharmacokinetic modeling with artificial intelligence
通过将基于生理学的药代动力学模型与人工智能相结合,开发基于网络的纳米粒子递送至肿瘤的预测模型
- 批准号:
10478848 - 财政年份:2021
- 资助金额:
$ 34.87万 - 项目类别:
Physiologically based pharmacokinetic modeling and analysis of administration route-dependent tissue distribution of gold nanoparticles
基于生理学的药代动力学模型和金纳米粒子给药途径依赖性组织分布的分析
- 批准号:
10450369 - 财政年份:2019
- 资助金额:
$ 34.87万 - 项目类别:
Physiologically based pharmacokinetic modeling and analysis of nanoparticle delivery to tumors
基于生理学的纳米颗粒递送至肿瘤的药代动力学建模和分析
- 批准号:
9434904 - 财政年份:2017
- 资助金额:
$ 34.87万 - 项目类别:
相似海外基金
Unraveling the Dynamics of International Accounting: Exploring the Impact of IFRS Adoption on Firms' Financial Reporting and Business Strategies
揭示国际会计的动态:探索采用 IFRS 对公司财务报告和业务战略的影响
- 批准号:
24K16488 - 财政年份:2024
- 资助金额:
$ 34.87万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Mighty Accounting - Accountancy Automation for 1-person limited companies.
Mighty Accounting - 1 人有限公司的会计自动化。
- 批准号:
10100360 - 财政年份:2024
- 资助金额:
$ 34.87万 - 项目类别:
Collaborative R&D
Accounting for the Fall of Silver? Western exchange banking practice, 1870-1910
白银下跌的原因是什么?
- 批准号:
24K04974 - 财政年份:2024
- 资助金额:
$ 34.87万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A New Direction in Accounting Education for IT Human Resources
IT人力资源会计教育的新方向
- 批准号:
23K01686 - 财政年份:2023
- 资助金额:
$ 34.87万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
An empirical and theoretical study of the double-accounting system in 19th-century American and British public utility companies
19世纪美国和英国公用事业公司双重会计制度的实证和理论研究
- 批准号:
23K01692 - 财政年份:2023
- 资助金额:
$ 34.87万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
An Empirical Analysis of the Value Effect: An Accounting Viewpoint
价值效应的实证分析:会计观点
- 批准号:
23K01695 - 财政年份:2023
- 资助金额:
$ 34.87万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Accounting model for improving performance on the health and productivity management
提高健康和生产力管理绩效的会计模型
- 批准号:
23K01713 - 财政年份:2023
- 资助金额:
$ 34.87万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
CPS: Medium: Making Every Drop Count: Accounting for Spatiotemporal Variability of Water Needs for Proactive Scheduling of Variable Rate Irrigation Systems
CPS:中:让每一滴水都发挥作用:考虑用水需求的时空变化,主动调度可变速率灌溉系统
- 批准号:
2312319 - 财政年份:2023
- 资助金额:
$ 34.87万 - 项目类别:
Standard Grant
New Role of Not-for-Profit Entities and Their Accounting Standards to Be Unified
非营利实体的新角色及其会计准则将统一
- 批准号:
23K01715 - 财政年份:2023
- 资助金额:
$ 34.87万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Improving Age- and Cause-Specific Under-Five Mortality Rates (ACSU5MR) by Systematically Accounting Measurement Errors to Inform Child Survival Decision Making in Low Income Countries
通过系统地核算测量误差来改善特定年龄和特定原因的五岁以下死亡率 (ACSU5MR),为低收入国家的儿童生存决策提供信息
- 批准号:
10585388 - 财政年份:2023
- 资助金额:
$ 34.87万 - 项目类别:














{{item.name}}会员




