Core A - Establishing the regulatory mechanisms defining cellular function
核心 A - 建立定义细胞功能的调节机制
基本信息
- 批准号:10641539
- 负责人:
- 金额:$ 51.79万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-04-07 至 2028-04-30
- 项目状态:未结题
- 来源:
- 关键词:ATAC-seqAlgorithmsAllelesBar CodesBindingBiological AssayCell Differentiation processCell NucleusCell physiologyCellsChromatinChromatin StructureCollaborationsCommunitiesConsultationsDNA Sequence AlterationDataData AnalysesData SetDevelopmentDiseaseDissectionDistalEducational workshopExperimental DesignsExperimental ModelsFunctional disorderGene ActivationGene ExpressionGene Expression RegulationGenesGenetic TranscriptionGenomicsHematopoiesisHematopoieticHeterogeneityHumanJointsMapsMeasurementMeasuresMediatingMethodsModelingMusMutationNucleic Acid Regulatory SequencesOutputProcessProductionProtocols documentationQuality ControlRNARegulationRegulator GenesRegulatory ElementResolutionResourcesRoleRotationSamplingScheduleSeriesSourceTechnologyTissuesUniversitiesWorkXCL1 geneZebrafishcausal variantcell behaviorcell typecomputational pipelinescomputerized data processingcostcost effectivecost effectivenessdata integrationdata managementdata sharingdata visualizationdesignepigenomicsexperienceexperimental studygene regulatory networkhematopoietic differentiationhematopoietic tissueinnovationmembermultiple omicsonline resourceprogramsregenerative biologysample collectionsingle-cell RNA sequencingstemstem cell biologystem cellstooltranscription factortranscriptome sequencingtranscriptomicsweb interface
项目摘要
Project Summary
The coordinated regulation of chromatin structure, transcription factor binding and RNA
expression is fundamental to cellular differentiation. Methods for measuring different layers of
gene regulation within single cells can be used to determine essential regulators of cell
differentiation and function as sensitive markers of cellular identity and lineage potential. To this
end, we (Buenrostro) have recently developed SHARE-seq (Simultaneous High-throughput
ATAC and RNA Expression with sequencing), for joint measurement of chromatin accessibility
and gene expression within the same single-cell, at low-cost and massive throughput. Using
SHARE-seq, we have shown that co-analysis of ATAC- and RNA-seq data from the same cell
can be used to associate transcription factors to their target regulatory regions and distal
regulatory elements to their target genes, enabling the definition of causal gene regulatory
networks. Furthermore, we have shown that changes in chromatin accessibility precedes changes
in gene expression, foreshadowing lineage commitment, and identifying a role for chromatin
accessibility in priming chromatin for gene activation. Here, we propose the establishment of the
Gene Regulation Core (GRC), which will be led by Dr. Jason Buenrostro at Harvard University's
Department of Stem Cell and Regenerative Biology. As part of this P01 proposal, the GRC will
enable the P01 members with SHARE-seq and other genomic technologies established in the
Buenrostro lab, which can be used to functionally annotate regulatory regions, identify key
transcription factors and chromatin regulators, define gene regulatory networks and parse cellular
states. The GRC will work closely with the P01 labs to design experiments, and organize and
collect hematopoietic samples (Aim 1). The GRC will use SHARE-seq to jointly profile chromatin
accessibility and RNA expression at the single cell level. This will include extending SHARE-seq
to capabilities uniquely enabled by SHARE-seq, such as the readout of transcribed lineage
barcodes and Clonal Hematopoiesis-associated mutations (Aim 2). Finally, the GRC will be
responsible for the primary processing of the data, data management, developing web interface
tools and organizing data discussions and workshops between the P01 labs (Aim 3). Overall, the
GRC will offer a complete solution for the single-cell genomics needs of the P01 community
through a unique and innovative suite of genomic technologies.
项目摘要
染色质结构、转录因子结合和RNA的协同调控
表达是细胞分化的基础。不同层数的测量方法
单细胞内的基因调节可以用来确定细胞的基本调节因子
分化和功能是细胞特性和谱系潜力的敏感标记。对这件事
完了,我们(Buenrostro)最近开发了Share-seq(同步高吞吐量
ATAC和RNA表达与测序),用于联合测量染色质的可及性
以及在同一单细胞内的基因表达,以低成本和巨大的吞吐量。vbl.使用
Share-Seq,我们已经证明了对来自同一细胞ATAC-和RNA-SEQ数据的联合分析
可用于将转录因子与其目标调节区和远端
对其靶基因的调控元件,使因果基因调控的定义成为可能
网络。此外,我们已经证明,染色质可及性的变化先于变化
在基因表达中,预示着世系承诺,并确定染色质的作用
启动染色质以激活基因的可及性。在此,我们建议设立
基因调控核心(GRC),将由哈佛大学的Jason Buenrostro博士领导
干细胞与再生生物学系。作为P01提案的一部分,GRC将
使P01成员拥有Share-Seq和其他在
Buenrostro实验室,可用于在功能上注释监管区域,识别关键
转录因子和染色质调节器,定义基因调控网络并解析细胞
各州。GRC将与P01实验室密切合作,设计实验,组织和
采集造血样本(目标1)。GRC将使用SHARE-SEQ联合分析染色质
在单细胞水平上的可及性和RNA表达。这将包括扩展共享序号
到由Share-Seq唯一启用的功能,例如转录谱系的读出
条形码和克隆造血相关突变(目标2)。最后,GRC将是
负责数据的前期处理、数据管理、网页界面的开发
工具和组织P01实验室之间的数据讨论和讲习班(目标3)。总体而言,
GRC将为P01社区的单细胞基因组需求提供完整的解决方案
通过一套独特和创新的基因组技术。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jason Daniel Buenrostro其他文献
Degradation of IKZF1 prevents epigenetic progression of T cell exhaustion in an antigen-specific assay
- DOI:
10.1016/j.xcrm.2024.101804 - 发表时间:
2024-11-19 - 期刊:
- 影响因子:
- 作者:
Tristan Tay;Gayathri Bommakanti;Elizabeth Jaensch;Aparna Gorthi;Iswarya Karapa Reddy;Yan Hu;Ruochi Zhang;Aatman S. Doshi;Sin Lih Tan;Verena Brucklacher-Waldert;Laura Prickett;James Kurasawa;Michael Glen Overstreet;Steven Criscione;Jason Daniel Buenrostro;Deanna A. Mele - 通讯作者:
Deanna A. Mele
Jason Daniel Buenrostro的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jason Daniel Buenrostro', 18)}}的其他基金
A Platform for Scalable Spatial Somatic Variant Profiling
可扩展的空间体细胞变异分析平台
- 批准号:
10662761 - 财政年份:2023
- 资助金额:
$ 51.79万 - 项目类别:
A cellular atlas of the primate and human basal ganglia
灵长类动物和人类基底神经节的细胞图谱
- 批准号:
10311023 - 财政年份:2020
- 资助金额:
$ 51.79万 - 项目类别:
A cellular atlas of the primate and human basal ganglia
灵长类动物和人类基底神经节的细胞图谱
- 批准号:
10088048 - 财政年份:2020
- 资助金额:
$ 51.79万 - 项目类别:
相似海外基金
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 51.79万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 51.79万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 51.79万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 51.79万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 51.79万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 51.79万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 51.79万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 51.79万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 51.79万 - 项目类别:
Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 51.79万 - 项目类别:
Research Grant