Higher-Order Neural Control of Food Intake
食物摄入的高阶神经控制
基本信息
- 批准号:10640909
- 负责人:
- 金额:$ 47.81万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-04-01 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:AcetylcholineAdultAppetite StimulantsAppetitive BehaviorAssociation LearningBasic ScienceBehavioralBehavioral MechanismsBiologicalBrainBrain StemBrain regionCategoriesChemicalsCholecystokininCholinergic ReceptorsChronicCognitiveConsumptionCuesDataDesire for foodDevelopmentDorsalEatingEnergy IntakeEpisodic memoryFeeding behaviorsFiberFoodFundingGenetic RecombinationHealth Care CostsHippocampusHormonesHypothalamic structureImageIncentivesIntestinesLateralLateral Hypothalamic AreaLearningLinkMapsMedialMediatingMemoryMemory impairmentMethodologyNeural PathwaysNeurobiologyNeuronsNeurosciencesNutrientObesityOverweightPathway interactionsPhotometryPopulationPrefrontal CortexPrevention strategyProcessRNA InterferenceReceptor SignalingResearchRewardsRoleSatiationSignal TransductionStimulusStomachSynapsesSystemTechnologyVagus nerve structureViralafferent nervebiological systemscholinergiccognitive processeffective therapyenergy balanceexperienceexperimental studyfeedinggastrointestinalghrelinghrelin receptorgut-brain axishedonicimprovedin vivoinnovationknock-downmemory processmotivated behaviormultimodalityneuralneural circuitneuroregulationneurotransmissionnovelnovel strategiesobesity preventionobesity treatmentreceptor bindingreduced food intakeresponsesensorsocialtreatment strategy
项目摘要
Project Summary
Improved understanding of the neurobiological systems involved in excessive caloric consumption is
critical for developing novel prevention and treatment strategies for obesity. Traditionally the field has focused
on hypothalamic and brainstem substrates that control `homeostatic' food intake that occurs in response to
energy deficits. In addition to studying these classic feeding centers, it is critical to also identify the systems
through which higher-order brain regions regulate reward-driven food seeking and consumption based on
learned, incentive, and hedonic cognitive factors. This project investigates the hippocampus (HPC) as a critical
brain substrate integrating memory processes and feeding-related signals to regulate conditioned food-
motivated behavior, including appetitive responses linked with excessive caloric intake and obesity. Our focus
is on two HPC subregions that intersect feeding behavior and memory: the ventral HPC CA1 (CA1v) and the
dorsal CA3 (CA3d). Our findings from the previous funding cycle identify a role for CA1v projections targeting
the medial prefrontal cortex (mPFC), lateral hypothalamic area (LHA), and lateral septum (LS) as pathways
functionally relevant to feeding behavior 1-3. Aim 1 experiments will advance these findings to identify the role
of three HPC projection pathways (CA1v -> mPFC, LHA, LS) in HPC-dependent associative learning tasks
that are relevant to excessive caloric intake and are based on categorically separate food-associated stimuli,
including [1] interoceptive energy status cues, [2] external contextual cues, and [3] social-based olfactory cues.
In addition to the appetitive associative memory processes described above, HPC-dependent meal-
related episodic memory (recalling who, what, when, and where surrounding a meal) powerfully influences
feeding behavior 4-8. Results from the previous funding cycle identified a neural pathway through which
gastrointestinal (GI) vagus afferent nerve (VAN) signaling, traditionally studied in the context of meal size
control, promotes HPC-dependent memory 9. Our preliminary results support the hypotheses that [1] the
stomach-derived hormone ghrelin acts via GI VAN signaling to promote meal-related episodic memory, and
[2] medial septum (MS) cholinergic signaling is a relay connecting GI VAN signaling and HPC function.
These hypotheses are investigated in Aim 2 experiments using an innovative combination of state-of-the-art
methodologies, including in vivo fiber photometry-based imaging of novel fluorescent genetically-encoded
sensors for acetylcholine (ACh) 10,11 and stomach distention-dependent electrical VAN stimulation. The extent
to which these ventral and dorsal HPC pathways converge through shared collateral projections, and/or
common downstream targets is examined in Aim 3 experiments that utilize neural pathway tracing approaches
to [1] map the collateral and 2nd-order projections of CA1v projections to mPFC, LHA, and LS, and [2] identify
downstream projections of CA3d neurons that encode GI VAN signaling. Overall results from these three
interconnected aims will identify novel neural systems that intersect memory and feeding behavior.
项目摘要
对过度热量消耗涉及的神经生物学系统的了解得到了改善的是
对于制定肥胖症的新型预防和治疗策略至关重要。传统上,该领域集中于
关于控制“稳态”食物摄入的下丘脑和脑干底物,该食物响应于
能源不足。除了研究这些经典的喂养中心外,还必须确定系统
高阶大脑区域通过其中调节奖励驱动的食物,以寻求和消费
学会,激励和享乐认知因素。该项目将海马(HPC)视为关键
脑底物整合记忆过程和喂养相关信号以调节条件食品 -
动机行为,包括与过量热量摄入和肥胖有关的食欲反应。我们的重点
位于两个与进食行为和内存相交的HPC子区域:腹侧HPC CA1(CA1V)和
背CA3(CA3D)。我们以前的资金周期中的发现确定了CA1V预测的作用
内侧前额叶皮层(MPFC),下丘脑面积(LHA)和外侧隔膜(LS)作为途径
与进食行为1-3的功能相关。 AIM 1实验将推进这些发现以确定角色
在HPC依赖性的关联学习任务中
与过量的热量摄入相关,并且基于与食物相关的刺激,
包括[1]互感能量状态提示,[2]外部上下文提示和[3]基于社会的嗅觉提示。
除了上述的食用性关联记忆过程外,HPC依赖性餐
相关的情节记忆(回想谁,什么,何时和周围的饭菜)有力地影响
喂养行为4-8。以前的资金周期的结果确定了一种神经途径
胃肠道(GI)迷走神经(van)信号传统在膳食大小的背景下进行研究
控制,促进HPC依赖性内存9。我们的初步结果支持[1]
胃衍生的激素生长素蛋白通过GI货车信号作用,以促进与进餐相关的情节记忆,并
[2]内侧隔膜(MS)胆碱能信号传导是连接GI货车信号传导和HPC功能的继电器。
在AIM 2实验中研究了这些假设
方法学,包括基于体内纤维光度法的新型荧光遗传编码的成像
乙酰胆碱(ACH)10,11和胃扩张依赖性电型式型刺激的传感器。程度
这些腹侧和背侧HPC途径通过共同的附带预测和/或
在AIM 3实验中检查了常见的下游目标,该实验利用神经途径追踪方法
[1]将CA1V投影的抵押品和二阶投影映射到MPFC,LHA和LS,[2]确定
编码GI货车信号传导的CA3D神经元的下游投影。这三个的总体结果
相互联系的目标将确定与记忆和进食行为相交的新型神经系统。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Scott Edward Kanoski其他文献
Scott Edward Kanoski的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Scott Edward Kanoski', 18)}}的其他基金
Control of feeding behavior by melanin-concentrating hormone
黑色素浓缩激素控制进食行为
- 批准号:
10152596 - 财政年份:2018
- 资助金额:
$ 47.81万 - 项目类别:
Control of feeding behavior by melanin-concentrating hormone
黑色素浓缩激素控制进食行为
- 批准号:
9923654 - 财政年份:2018
- 资助金额:
$ 47.81万 - 项目类别:
相似国自然基金
成人型弥漫性胶质瘤患者语言功能可塑性研究
- 批准号:82303926
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
MRI融合多组学特征量化高级别成人型弥漫性脑胶质瘤免疫微环境并预测术后复发风险的研究
- 批准号:82302160
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
成人免疫性血小板减少症(ITP)中血小板因子4(PF4)通过调节CD4+T淋巴细胞糖酵解水平影响Th17/Treg平衡的病理机制研究
- 批准号:82370133
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
SMC4/FoxO3a介导的CD38+HLA-DR+CD8+T细胞增殖在成人斯蒂尔病MAS发病中的作用研究
- 批准号:82302025
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
融合多源异构数据应用深度学习预测成人肺部感染病原体研究
- 批准号:82302311
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Non-coding RNA regulation of neuronal protein translation and appetite control
非编码RNA调节神经元蛋白质翻译和食欲控制
- 批准号:
10751087 - 财政年份:2023
- 资助金额:
$ 47.81万 - 项目类别:
Neuroanatomical substrates underpinning brain aromatase control of feeding behavior and metabolic homeostasis
支持大脑芳香酶控制摄食行为和代谢稳态的神经解剖学基质
- 批准号:
10737130 - 财政年份:2023
- 资助金额:
$ 47.81万 - 项目类别:
Mechanisms of action for dorsomedial hypothalamic Lepr-Glp1r neurons that control feeding and energy balance
控制摄食和能量平衡的下丘脑背内侧 Lepr-Glp1r 神经元的作用机制
- 批准号:
10748011 - 财政年份:2023
- 资助金额:
$ 47.81万 - 项目类别:
ESTROGEN-INDUCIBLE PNNS ENHANCE EXCITATORY SYNAPTIC STRENGTH ONTO GABA NEURONS IN THE MEPD TO PREVENT OBESITY AND METABOLIC DYSREGULATION
雌激素诱导的 PNNS 增强 MEPD 中 GABA 神经元的兴奋性突触强度,以预防肥胖和代谢失调
- 批准号:
10712725 - 财政年份:2023
- 资助金额:
$ 47.81万 - 项目类别: