Clinical foundation model for structured clinical data
结构化临床数据的临床基础模型
基本信息
- 批准号:10639397
- 负责人:
- 金额:$ 35.1万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2027-05-31
- 项目状态:未结题
- 来源:
- 关键词:ArchitectureAttentionCOVID-19 patientChemicalsClinicalClinical DataCodeDataData ElementData ProtectionData SourcesDevelopmentDiagnosisElectronic Health RecordEngineeringEvaluationEventFosteringFoundationsGoalsHealthHealth Care CostsHealthcare SystemsHeart failureIntakeJournalsKnowledgeLearningLong COVIDMalignant neoplasm of pancreasMethodologyMethodsModelingMolecularNatural Language ProcessingPatient riskPatient-Focused OutcomesPatientsPeer ReviewPerformancePharmaceutical PreparationsPoliciesPopulationPredictive Cancer ModelPreparationRecommendationRecording of previous eventsResearch PersonnelRiskSourceStructureTerminologyTimeTrainingUnified Medical Language SystemVariantWorkbasecohortcomorbidity Indexcoronavirus diseasedesigndiabetic patientexperienceflexibilityimprovedknowledge integrationmodel buildingpredictive modelingpublic health relevancestructured datasymposium
项目摘要
Abstract
In the era of big clinical data, the availability of rich real-world clinical data sources (RWcD) enables the
development of predictive models for different clinical events, bringing the potential to improve efficiency and
lower the cost of health care. However, the currently in-use models in practice are mostly trained on local data,
introducing issues of bias and lack of generalizability. We will develop comprehensive methods to efficiently
train high-quality clinical foundation model (CFM) that learn informative representations from patients'
structured clinical data either in the form of EHR or claims. Specifically, how to train CFM that can maximize
the performance boost for any downstream prediction tasks regardless of the predictive model architecture and
the size of the available training data. In this application we propose to 1) Develop a flexible framework to
intake the temporal structured clinical data elements from heterogenous sources and enrich it with existing
knowledge, 2) Optimize the foundation model architecture and pre-training strategy, 3) Develop prompting
strategies for zero/few shot learning, and 4) Evaluating CFM on multiple clinical downstream tasks.
摘要
在大临床数据时代,丰富的真实世界临床数据源(RWcD)的可用性使
开发针对不同临床事件的预测模型,带来提高效率和
降低医疗费用。然而,目前在实践中使用的模型大多是在本地数据上训练的,
引入了偏见和缺乏普遍性的问题。我们将制定全面的方法,
训练高质量的临床基础模型(CFM),该模型从患者的
以EHR或索赔形式的结构化临床数据。具体来说,如何培养能够最大限度地
无论预测模型架构如何,任何下游预测任务的性能提升,
可用训练数据的大小。在本申请中,我们建议:1)开发一个灵活的框架,
从异构源中获取时间结构化临床数据元素,并使用现有的
知识,2)优化基础模型架构和预培训策略,3)开发提示
用于零/少射击学习的策略,以及4)在多个临床下游任务上评估CFM。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Laila Rasmy Gindy Bekhet其他文献
Laila Rasmy Gindy Bekhet的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Laila Rasmy Gindy Bekhet', 18)}}的其他基金
Genetics of deep-learning-derived neuroimaging endophenotypes for Alzheimer's Disease
阿尔茨海默病深度学习神经影像内表型的遗传学
- 批准号:
10660742 - 财政年份:2021
- 资助金额:
$ 35.1万 - 项目类别:
相似国自然基金
多模态超声VisTran-Attention网络评估早期子宫颈癌保留生育功能手术可行性
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
Ultrasomics-Attention孪生网络早期精准评估肝内胆管癌免疫治疗的研究
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
相似海外基金
Development of social attention indicators of emerging technologies and science policies with network analysis and text mining
利用网络分析和文本挖掘开发新兴技术和科学政策的社会关注指标
- 批准号:
24K16438 - 财政年份:2024
- 资助金额:
$ 35.1万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Improving Flexible Attention to Numerical and Spatial Magnitudes in Young Children
提高幼儿对数字和空间大小的灵活注意力
- 批准号:
2410889 - 财政年份:2024
- 资助金额:
$ 35.1万 - 项目类别:
Continuing Grant
The Information-Attention Tradeoff: Toward an Understanding of the Fundamentals of Online Attention
信息与注意力的权衡:了解在线注意力的基本原理
- 批准号:
2343858 - 财政年份:2024
- 资助金额:
$ 35.1万 - 项目类别:
Continuing Grant
The everyday learning opportunities of young children with attention and motor difficulties: From understanding constraints to reshaping intervention
注意力和运动困难幼儿的日常学习机会:从理解限制到重塑干预
- 批准号:
MR/X032922/1 - 财政年份:2024
- 资助金额:
$ 35.1万 - 项目类别:
Fellowship
Towards a cognitive process model of how attention and choice interact
建立注意力和选择如何相互作用的认知过程模型
- 批准号:
DP240102605 - 财政年份:2024
- 资助金额:
$ 35.1万 - 项目类别:
Discovery Projects
DDRIG in DRMS: Communicating risks in a sensational media environment-Using short video multimodal features to attract attention and reduce psychological reactance for persuasion
DRMS中的DDRIG:耸人听闻的媒体环境中沟通风险——利用短视频多模态特征吸引注意力,减少说服心理抵触
- 批准号:
2343506 - 财政年份:2024
- 资助金额:
$ 35.1万 - 项目类别:
Standard Grant
Assessing the Influence of Reading Fiction on Multiple Tests of Attention
评估阅读小说对注意力多重测试的影响
- 批准号:
24K16033 - 财政年份:2024
- 资助金额:
$ 35.1万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
CAREER: Designing Ultra-Energy-Efficient Intelligent Hardware with On-Chip Learning, Attention, and Inference
职业:设计具有片上学习、注意力和推理功能的超节能智能硬件
- 批准号:
2336012 - 财政年份:2023
- 资助金额:
$ 35.1万 - 项目类别:
Continuing Grant
CPS: Small: Brain-Inspired Memorization and Attention for Intelligent Sensing
CPS:小:智能传感的受大脑启发的记忆和注意力
- 批准号:
2312517 - 财政年份:2023
- 资助金额:
$ 35.1万 - 项目类别:
Standard Grant
CAREER: Understanding the Relationship of Covert and Overt Attention Using Concurrent EEG and Eye Tracking
职业:使用并发脑电图和眼动追踪了解隐性注意力和显性注意力的关系
- 批准号:
2345898 - 财政年份:2023
- 资助金额:
$ 35.1万 - 项目类别:
Continuing Grant














{{item.name}}会员




