Architecture, dynamics and regulation of erythrocyte ankyrin-1 complexes
红细胞ankyrin-1复合物的结构、动力学和调节
基本信息
- 批准号:10638440
- 负责人:
- 金额:$ 68.21万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-20 至 2027-07-31
- 项目状态:未结题
- 来源:
- 关键词:ANK1 geneAQP1 geneActinsAddressAmmoniaAnemiaAnionsAnkyrinsArchitectureBicarbonatesBindingBinding SitesBiological AssayCD47 geneCell membraneCellsComplementComplexCryo-electron tomographyCryoelectron MicroscopyCytoskeletonDataDetergentsDiffusionDigitoninErythrocyte MembraneErythrocytesEventGYPA geneGasesGlycophorin BGoalsHereditary SpherocytosisHeterogeneityHumanIn SituInheritedLipid BilayersLipidsLiposomesLiteratureMediatingMembraneMembrane ProteinsMethodsMicellesMolecular ConformationMorphologic artifactsMutationPhosphatidylinositol 4,5-DiphosphatePhosphatidylinositolsPhospholipase CPhysiologicalPlayPopulationPreparationProcessPropertyProteinsRecombinantsRegulationReportingResearchResolutionRhesusSamplingScaffolding ProteinShapesSiteSkeletonSodium ChannelSpectrinStructureTissuesTransmembrane DomainVesicleVoltage-Gated Potassium ChannelWestern BlottingWorkconformational conversioncrosslinkdimerexperimental studyinsightmechanical propertiesmolecular dynamicsmolecular scalemutantnanodisknovelparticlepolypeptideprotein complexprotein purificationreconstructionuptake
项目摘要
PROJECT SUMMARY/ABSTRACT: Ankyrin-1-mediated membrane protein clustering and crosslinking to the
spectrin-actin cytoskeleton is critical to maintaining the shape and mechanical properties of the erythrocyte
membrane, and disruption of the ankyrin-1 complex is a proximal cause of several hereditary anemias
characterized by alterations in erythrocyte shape and stability, the most frequent of which is hereditary
spherocytosis (HS). The mechanistic basis of ankyrin-mediated membrane protein clustering is not well
understood, in erythrocytes or any other tissue. Understanding how ankyrin-1 clusters functionally important
membrane proteins such as the band 3 anion exchanger and crosslinks them to the spectrin-actin skeleton, will
inform our understanding of how ankyrins modulate membrane curvature in a physiological complex, and how
loss of specific components leads to disruption of membrane curvature in the context of inherited anemias such
as HS. We will approach this challenge of characterizing the architecture, dynamics and regulation of the human
erythrocyte ankyrin-1 complex in the context of three specific Aims. In Aim 1, we will probe the architecture and
assembly of erythrocyte ankyrin-1 complexes, with the ultimate goal of understanding their disposition in the
context of native erythrocyte membranes. We will approach this using single particle cryoelectron microscopy
(cryoEM) of purified complexes, in either detergent micelles or lipid nanodiscs, as well as applying cryoelectron
tomography (cryoET) and sub-tomogram averaging to characterize the structure, composition and conformation
of the complex in the context of native erythrocyte membrane vesicles. In Aim 2, we shift our focus to the band
3 anion exchanger, the most abundant membrane protein in the erythrocyte and a key binding partner of ankyrin-
1, which plays a key role in gas exchange across the membrane, but for which the transport mechanism is
unclear. We will characterize the inward-facing state of the transporter, both alone and in complex with ankyrin-
1, and identify functionally relevant anion binding sites using cryoEM in conjunction with molecular dynamics
simulations. Functional characterization of recombinantly expressed mutants using liposome uptake assays will
be used to validate identified anion binding sites. In Aim 3, we will investigate regulation of the band 3 anion
exchanger, and the ankyrin-1 complex, by the phosphoinositide PIP2. A PIP2 binding site has recently been
structurally identified in band 3, but the functional significance of this site is unclear. We will address this by
depleting PIP2 from both purified band 3, and the purified ankyrin-1 complex, and characterizing the effects of
PIP2 depletion on structure and function. Our research will broadly impact the field, by unraveling the structural
basis of ankyrin-mediated membrane protein clustering and modulation of membrane curvature, and provide
insights into the regulation of both processes by phosphoinositides.
项目摘要/摘要:锚蛋白-1介导膜蛋白聚集和交联到
血影蛋白-肌动蛋白细胞骨架对维持红细胞的形状和机械性能至关重要
膜结合蛋白-1复合体的破坏是几种遗传性贫血的近端原因
以红细胞形状和稳定性改变为特征的,最常见的是遗传性的
球形细胞增多症(HS)。锚蛋白介导的膜蛋白聚集的机制基础不是很好。
了解,在红细胞或任何其他组织中。了解ankyrin-1簇在功能上的重要性
膜蛋白,如带3的阴离子交换器,并将它们与光影蛋白-肌动蛋白骨架交联,将
告诉我们如何在生理复合体中调节膜曲率,以及如何
在遗传性贫血的情况下,特定成分的丢失会导致膜曲率的破坏
作为HS。我们将应对这一挑战,刻画人类的建筑、动态和规则
红细胞黏蛋白-1复合体在三个特定目的的背景下。在目标1中,我们将探讨体系结构和
组装红细胞锚蛋白-1复合体,最终目的是了解它们在体内的分布。
天然红细胞膜的背景。我们将使用单粒子低温电子显微镜来研究这一问题。
在洗涤剂胶束或脂质纳米盘中,以及施加冷冻电子,对纯化的络合物进行(低温EM)
断层摄影术(冷冻ET)和亚断层图像平均以表征结构、组成和构象
在天然红细胞膜囊泡的背景下。在《目标2》中,我们将注意力转移到乐队上
3阴离子交换器,红细胞中含量最丰富的膜蛋白,也是锚蛋白的关键结合伙伴-
1,它在跨膜气体交换中起关键作用,但其转运机制是
不清楚。我们将描述转运蛋白的内向状态,无论是单独的还是与锚蛋白-
1,并结合分子动力学,用低温电子显微镜鉴定功能相关的阴离子结合部位。
模拟。利用脂质体摄取试验鉴定重组表达突变体的功能
用于验证已识别的阴离子结合位点。在目标3中,我们将研究带3负离子的调节
由磷脂酰肌醇PIP2形成的Ankyrin-1复合体。PIP2结合位点最近被
在结构上确定在带3,但该站点的功能意义尚不清楚。我们将通过以下方式解决这个问题
从纯化的带3和纯化的Ankyrin-1复合体中去除PIP2,并表征
PIP2在结构和功能上的耗竭。我们的研究将广泛影响该领域,通过解开结构
Anyrin介导的膜蛋白聚集和膜曲率调节的基础,并提供
对肌醇磷脂调节这两个过程的洞察。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Oliver Biggs Clarke其他文献
CryoDRGN-AI: neural ab initio reconstruction of challenging cryo-EM and cryo-ET datasets
CryoDRGN-AI:具有挑战性的冷冻电镜和冷冻断层扫描数据集的神经从头重建
- DOI:
10.1038/s41592-025-02720-4 - 发表时间:
2025-06-26 - 期刊:
- 影响因子:32.100
- 作者:
Axel Levy;Rishwanth Raghu;J. Ryan Feathers;Michal Grzadkowski;Frédéric Poitevin;Jake D. Johnston;Francesca Vallese;Oliver Biggs Clarke;Gordon Wetzstein;Ellen D. Zhong - 通讯作者:
Ellen D. Zhong
Oliver Biggs Clarke的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Oliver Biggs Clarke', 18)}}的其他基金
Structural basis for allosteric regulation of RyR1
RyR1 变构调节的结构基础
- 批准号:
10366087 - 财政年份:2021
- 资助金额:
$ 68.21万 - 项目类别:
Structural basis for allosteric regulation of RyR1
RyR1 变构调节的结构基础
- 批准号:
10596598 - 财政年份:2021
- 资助金额:
$ 68.21万 - 项目类别:
Structural basis for allosteric regulation of RyR1
RyR1 变构调节的结构基础
- 批准号:
10211076 - 财政年份:2021
- 资助金额:
$ 68.21万 - 项目类别:
相似海外基金
Ultrasound-Assisted AQP1 Gene Therapy for Functional Restoration of Salivary Glan
超声辅助 AQP1 基因治疗唾液腺功能恢复
- 批准号:
8390748 - 财政年份:2012
- 资助金额:
$ 68.21万 - 项目类别:
Ultrasound-Assisted AQP1 Gene Therapy for Functional Restoration of Salivary Glan
超声辅助 AQP1 基因治疗唾液腺功能恢复
- 批准号:
8514570 - 财政年份:2012
- 资助金额:
$ 68.21万 - 项目类别:
Ultrasound-Assisted AQP1 Gene Therapy for Functional Restoration of Salivary Glan
超声辅助 AQP1 基因治疗唾液腺功能恢复
- 批准号:
8668774 - 财政年份:2012
- 资助金额:
$ 68.21万 - 项目类别:
Ultrasound-Assisted AQP1 Gene Therapy for Functional Restoration of Salivary Glan
超声辅助 AQP1 基因治疗唾液腺功能恢复
- 批准号:
8878038 - 财政年份:2012
- 资助金额:
$ 68.21万 - 项目类别: