The mechanotranscriptome of the optic nerve head following acute experimental ocular hypertension in living human eyes
活体人眼急性实验性高眼压后视神经乳头的机械转录组
基本信息
- 批准号:10639434
- 负责人:
- 金额:$ 57.23万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-06-01 至 2028-05-31
- 项目状态:未结题
- 来源:
- 关键词:AcuteAnimal ModelAnimalsAstrocytesBiomechanicsBlindnessBlood VesselsBrain DeathCellsConnective TissueConsentDataDevelopmentElectrophysiology (science)EvaluationExhibitsEyeFibroblastsFunctional disorderGlaucomaHistopathologyHumanImmunohistochemistryIndividualInflammatoryInjuryIschemiaLinkMeasurementMeasuresMechanicsMethodsMicrogliaModelingMolecularNeurogliaOcular HypertensionOptic DiskOptic NerveOrgan DonorOrgan ProcurementsPapillaryPathologicPathway interactionsPerfusionPhenotypePhysiologic Intraocular PressurePredispositionProtein AnalysisProteinsResearchResourcesRetinaRetinal Ganglion CellsRiskRisk FactorsScienceScleraStressStretchingStructureStudy modelsTestingTherapeutic InterventionTimeTissuesTranscriptTranslationsVariantWeight-Bearing stateaxon injurycell typeclinical careclinical imagingdensitydesignexperimental studyhuman diseaseimaging approachin vivoinnovationinsightmechanotransductionneuralnew therapeutic targetnovel therapeuticsoptic nerve disorderpressurepromote resilienceresponseretinal axontargeted treatmenttherapeutic developmenttissue culturetranscriptometranscriptomics
项目摘要
Glaucoma is one of the leading causes of irreversible blindness for which the lowering of intraocular pressure
(IOP) is the only proven treatment. Since elevated IOP is a critical risk factor for glaucoma, several animal models
have been developed to study the cellular, vascular, and electrophysiologic responses of the retina to acute IOP
elevation. While these models have elucidated the relationship between ocular perfusion and retinal function as
well as many of the cellular pathways activated in response to acute IOP related exposure, there are significant
differences in optic nerve structure and composition across species, limiting the translation of these findings to
the human disease. This project will study the impact of IOP elevation in the living human eye for the first time
by utilizing the unique resources developed by the Living Eye Project. This project provides experimental access
to the human eye in vivo in research-consented brain-dead organ donors prior to organ procurement. Following
enucleation, the Living Eye Project provides access to the same eyes for ex vivo analysis of cellular and tissue
responses. Our principal hypothesis is that acute IOP elevation results in deformation of the optic nerve head
(ONH), and this deformation drives mechanosensitive mechanisms within the lamina cribrosa (LC) and
peripapillary sclera that initiate pathologic remodeling of the LC, which injures the axons of retinal ganglion cells
traversing this mechanically dynamic region. These mechanosensitive pathways will be characterized using
spatial transcriptomics for the first time in the human eye alongside immunohistochemistry and protein analysis.
We predict that increased IOP initiates a profibrotic, inflammatory phenotype and transcriptomic alterations that
regionally colocalize with the connective tissue density within the LC and are associated with the magnitude of
IOP-induced deformation of the ONH measured in vivo. Our unprecedented opportunity to measure structural
and biomechanical parameters of the human ONH in vivo and perform ex vivo evaluation of the cellular
mechanobiology of the same tissues will provide the first direct experimental link between ONH mechanical
strain and the molecular and cellular responses of ONH tissues that drive remodeling, which is critical to the
development and progression of glaucomatous optic neuropathy. Defining this “mechanotranscriptome” in the
human ONH will critically assess the translational value of animal models for studying mechanotransduction as
well as define the human cellular and molecular mechanisms of ONH remodeling needed to guide the
development of novel therapeutics designed to enhance the resilience of the ONH to pressure-related stress.
青光眼是眼压降低导致不可逆失明的主要原因之一
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Displacement of the Lamina Cribrosa With Acute Intraocular Pressure Increase in Brain-Dead Organ Donors.
- DOI:10.1167/iovs.64.15.19
- 发表时间:2023-12-01
- 期刊:
- 影响因子:4.4
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Massimo Antonio Fazio其他文献
Massimo Antonio Fazio的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Massimo Antonio Fazio', 18)}}的其他基金
Determinants of the Biomechanical Behavior of the Human Lamina Cribrosa
人类筛板生物力学行为的决定因素
- 批准号:
9765319 - 财政年份:2018
- 资助金额:
$ 57.23万 - 项目类别:
Determinants of the Biomechanical Behavior of the Human Lamina Cribrosa
人类筛板生物力学行为的决定因素
- 批准号:
10238922 - 财政年份:2018
- 资助金额:
$ 57.23万 - 项目类别:
African Descent and Glaucoma Evaluation (ADAGES) IV: Alterations of the lamina cribrosa in progression
非洲人后裔和青光眼评估 (ADAGES) IV:进展中筛板的改变
- 批准号:
9246738 - 财政年份:2017
- 资助金额:
$ 57.23万 - 项目类别:
African Descent and Glaucoma Evaluation (ADAGES) IV: Alterations of the lamina cribrosa in progression
非洲人后裔和青光眼评估 (ADAGES) IV:进展中筛板的改变
- 批准号:
9903321 - 财政年份:2017
- 资助金额:
$ 57.23万 - 项目类别:
相似海外基金
Quantification of Neurovasculature Changes in a Post-Hemorrhagic Stroke Animal-Model
出血性中风后动物模型中神经血管变化的量化
- 批准号:
495434 - 财政年份:2023
- 资助金额:
$ 57.23万 - 项目类别:
Bioactive Injectable Cell Scaffold for Meniscus Injury Repair in a Large Animal Model
用于大型动物模型半月板损伤修复的生物活性可注射细胞支架
- 批准号:
10586596 - 财政年份:2023
- 资助金额:
$ 57.23万 - 项目类别:
A Comparison of Treatment Strategies for Recovery of Swallow and Swallow-Respiratory Coupling Following a Prolonged Liquid Diet in a Young Animal Model
幼年动物模型中长期流质饮食后吞咽恢复和吞咽呼吸耦合治疗策略的比较
- 批准号:
10590479 - 财政年份:2023
- 资助金额:
$ 57.23万 - 项目类别:
Small animal model for evaluating the impacts of cleft lip repairing scar on craniofacial growth and development
评价唇裂修复疤痕对颅面生长发育影响的小动物模型
- 批准号:
10642519 - 财政年份:2023
- 资助金额:
$ 57.23万 - 项目类别:
Diurnal grass rats as a novel animal model of seasonal affective disorder
昼夜草鼠作为季节性情感障碍的新型动物模型
- 批准号:
23K06011 - 财政年份:2023
- 资助金额:
$ 57.23万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Longitudinal Ocular Changes in Naturally Occurring Glaucoma Animal Model
自然发生的青光眼动物模型的纵向眼部变化
- 批准号:
10682117 - 财政年份:2023
- 资助金额:
$ 57.23万 - 项目类别:
A whole animal model for investigation of ingested nanoplastic mixtures and effects on genomic integrity and health
用于研究摄入的纳米塑料混合物及其对基因组完整性和健康影响的整体动物模型
- 批准号:
10708517 - 财政年份:2023
- 资助金额:
$ 57.23万 - 项目类别:
A Novel Large Animal Model for Studying the Developmental Potential and Function of LGR5 Stem Cells in Vivo and in Vitro
用于研究 LGR5 干细胞体内外发育潜力和功能的新型大型动物模型
- 批准号:
10575566 - 财政年份:2023
- 资助金额:
$ 57.23万 - 项目类别:
Elucidating the pathogenesis of a novel animal model mimicking chronic entrapment neuropathy
阐明模拟慢性卡压性神经病的新型动物模型的发病机制
- 批准号:
23K15696 - 财政年份:2023
- 资助金额:
$ 57.23万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
The effect of anti-oxidant on swallowing function in an animal model of dysphagia
抗氧化剂对吞咽困难动物模型吞咽功能的影响
- 批准号:
23K15867 - 财政年份:2023
- 资助金额:
$ 57.23万 - 项目类别:
Grant-in-Aid for Early-Career Scientists














{{item.name}}会员




