Molecular mechanisms behind microbiota regulation of host amino acid and glucose homeostasis
微生物群调节宿主氨基酸和葡萄糖稳态背后的分子机制
基本信息
- 批准号:10639042
- 负责人:
- 金额:$ 49.15万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-04-01 至 2028-03-31
- 项目状态:未结题
- 来源:
- 关键词:AffectAgeAmino Acid Metabolism PathwayAmino AcidsAryl Hydrocarbon ReceptorBioinformaticsBiologicalBiological AssayBiological AvailabilityBiologyCellsClinicalCodeCollectionCommunitiesComplexConsumptionDataDiabetic mouseDietDiseaseEconomic BurdenEngineeringEnterochromaffin CellsEnvironmental Risk FactorEpigenetic ProcessEtiologyFermentationFunctional disorderGene ModifiedGenesGeneticGenomicsGerm-FreeGlucoseGnotobioticHealthHomeostasisHumanHuman bodyIn VitroIntestinesInvestigationKnockout MiceKynurenineLearningMediatingMetabolicMetabolic DiseasesMetabolic PathwayMetabolismMicrobeMicrobial GeneticsMolecularMotivationMusNon-Insulin-Dependent Diabetes MellitusNutrientPathway interactionsPatientsPeripheralPhylogenetic AnalysisPlayPopulationPrevalencePublic HealthPublishingReceptor SignalingRegulationRoleSamplingSerotoninSeverity of illnessSignal PathwaySignal TransductionSiteSystemTestingTherapeuticTissuesTryptophanWorkage relatedamino acid metabolismaryl hydrocarbon receptor ligandbacterial geneticsblood glucose regulationdietarygene synthesisgenetic manipulationglucose metabolismglucose tolerancegut bacteriagut microbesgut microbiomegut microbiotahuman microbiotain vivoinhibitorinsightlongitudinal datasetmembermetabolic phenotypemetabolomicsmicrobialmicrobial communitymicrobiomemicrobiotamouse modelmultiple omicsmutantnovel therapeutic interventionpan-genomepreventpublic health relevancesynthetic biology
项目摘要
Type 2 Diabetes (T2D) prevalence increases with age and affects over 13.2% of the US
population by 2020. Studies show that microbiota composition and their metabolic genes are
different between healthy and T2D patients. However, it is challenging to unravel their causal
effects on host glucose homeostasis and T2D due to the lack of an efficient system to manipulate
their levels in vivo. Recently, we were able to toggle microbiota amino acid metabolic pathways
in vivo and found that some pathways affect host glucose homeostasis. We hypothesize that the
gut bacteria impact the host amino acid pool, which will further modulate host glucose
homeostasis. Herein we will identify the microbes that actively ferment dietary amino acids and
evaluate how they affect host glucose homeostasis in diseased mouse models. We will learn
more about the role of microbiota-mediated AA metabolism in the progress of T2D. Our work will
also lay the ground for generating a synthetic and engineered gut microbial community with
defined metabolic functions to prevent and cure T2D. There are three convergent motivations:
First, many microbiota molecular features are different between healthy and T2D patients, and
we need functional studies to causally connect them with T2D. We will combine bioinformatics,
metabolomics, bacterial genetics, and a gnotobiotic mouse model to modulate microbiome
metabolic pathways in the host. This approach will boost a systematic identification of T2D-
causing microbiota genes and pathways; our findings will also promote new therapeutic strategies
by targeting these previously unknown microbial metabolic avenues.
Second, gut microbiota metabolism significantly impacts host metabolic health. However, the
molecular mechanisms behind how microbiota regulates host amino acid homeostasis and
downstream biology remain largely unexplored. We believe that this approach has huge potential:
it can be used to regulate the microbiome metabolic functions at different body sites where host
and microbes interact. Our finding would also open the door to interrogating – and ultimately
controlling – one of the most concrete contributions that gut bacteria make to host biology.
Third, a synthetic microbial community with a defined and programmable metabolic function has
therapeutic potential for T2D. The gut microbiome is part of our ‘pan-genome,’ whose metabolic
functions are more tractable by genetic manipulation or adjusting microbiota composition. Our
approach will expedite the genomic and biological characterization of microbiota metabolic genes,
laying the basis for a synthetic community with a defined and programmable metabolic function
to prevent and cure T2D and other age-related metabolic diseases.
2型糖尿病(T2D)患病率随着年龄的增长而增加,并影响超过13.2%的美国
到2020年的人口。研究表明,微生物群的组成及其代谢基因是
健康和T2D患者之间的不同。但是,揭开其因果关系是一个挑战
由于缺乏有效的系统来操纵,对宿主葡萄糖稳态和T2D的影响
它们的体内水平。最近,我们能够切换微生物群氨基酸代谢途径
体内发现,一些途径会影响宿主葡萄糖稳态。我们假设
肠道细菌会影响宿主氨基酸池,该池将进一步调节宿主葡萄糖
稳态。在此,我们将确定积极发酵饮食氨基酸的微生物和
评估它们如何影响宿主葡萄糖稳态中的宿主稳态。我们将学习
有关微生物群介导的AA代谢在T2D进展中的作用的更多信息。我们的工作将
还为产生一个合成和设计的肠道微生物社区奠定了基础
定义的代谢功能可预防和治愈T2D。有三个收敛的主题:
首先,健康和T2D患者之间的许多微生物群分子特征不同,
我们需要功能研究才能使它们与T2D联系起来。我们将结合生物信息学,
代谢组学,细菌遗传学和gnotobiotic小鼠模型调节微生物组
主机中的代谢途径。这种方法将促进对T2D-的系统识别
引起菌群基因和途径;我们的发现还将促进新的治疗策略
通过针对这些以前未知的微生物代谢途径。
其次,肠道微生物群代谢会显着影响宿主代谢健康。但是,
微生物群如何调节宿主氨基酸稳态和
下游生物学基本上仍然是意外的。我们认为,这种方法具有巨大的潜力:
它可用于调节不同身体部位的微生物组代谢功能
和微生物相互作用。我们的发现也将打开审讯的大门 - 最终
控制 - 肠道细菌对宿主生物学做出的最具体的贡献之一。
第三,具有定义且可编程的代谢功能的合成微生物群落具有
T2D的治疗潜力。肠道微生物组是我们的“泛基因组”的一部分,其代谢
通过遗传操作或调整微生物群组成,功能更具处理性。我们的
方法将加快微生物群代谢基因的基因组和生物学特征,
为具有定义且可编程的代谢功能的合成社区奠定基础
预防和治愈T2D和其他与年龄有关的代谢疾病。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Chun-Jun Guo其他文献
Chun-Jun Guo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
无线供能边缘网络中基于信息年龄的能量与数据协同调度算法研究
- 批准号:62372118
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
CHCHD2在年龄相关肝脏胆固醇代谢紊乱中的作用及机制
- 批准号:82300679
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
颗粒细胞棕榈酰化蛋白FXR1靶向CX43mRNA在年龄相关卵母细胞质量下降中的机制研究
- 批准号:82301784
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
年龄相关性黄斑变性治疗中双靶向药物递释策略及其机制研究
- 批准号:82301217
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
多氯联苯与机体交互作用对生物学年龄的影响及在衰老中的作用机制
- 批准号:82373667
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Perfluoroalkyl substances and non-alcoholic fatty liver disease in children: Leveraging magnetic resonance imaging to unravel potential mechanisms and exposure mixture effects
全氟烷基物质与儿童非酒精性脂肪肝:利用磁共振成像揭示潜在机制和暴露混合物效应
- 批准号:
10646759 - 财政年份:2023
- 资助金额:
$ 49.15万 - 项目类别:
Mechanisms of mitochondrial-ER communication during dietary and thermal induced stress
饮食和热应激期间线粒体-内质网通讯的机制
- 批准号:
10663603 - 财政年份:2023
- 资助金额:
$ 49.15万 - 项目类别:
Chromatin connects metabolism to circadian gene regulation in the aging eye
染色质将新陈代谢与衰老眼睛的昼夜节律基因调控联系起来
- 批准号:
10585177 - 财政年份:2023
- 资助金额:
$ 49.15万 - 项目类别:
Investigating the Lysosome and Plasma Membrane Systems in Protecting Cells Against Age-induced Amino Acid Toxicity
研究溶酶体和质膜系统保护细胞免受年龄诱导的氨基酸毒性的作用
- 批准号:
10680314 - 财政年份:2023
- 资助金额:
$ 49.15万 - 项目类别:
Nonalcoholic Fatty Liver Disease (NAFLD) in Polycystic Ovary Syndrome: The Role of Androgens on Liver Injury and NAFLD Progression
多囊卵巢综合征中的非酒精性脂肪肝 (NAFLD):雄激素在肝损伤和 NAFLD 进展中的作用
- 批准号:
10735807 - 财政年份:2023
- 资助金额:
$ 49.15万 - 项目类别: