Multimodal Data Analysis and Integration
多模态数据分析与集成
基本信息
- 批准号:10639548
- 负责人:
- 金额:$ 32.15万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-04-15 至 2028-03-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAnatomyBiological ModelsBrainCognitiveComputer ModelsDataData AnalysesDiffusionDimensionsElectrodesElectroencephalographyEnsureEventFrequenciesFunctional Magnetic Resonance ImagingGoalsHumanImageIndividualJointsLinkMacacaMagnetic Resonance ImagingMapsMeasurementMethodsModalityModelingMonkeysNeurobiologyOutputPhysiologicalPropertyPupilReproducibilityRestRoleSignal TransductionSurfaceT2 weighted imagingTestingWorkdata integrationdesigndistributed datadynamic systemfunctional magnetic resonance imaging/electroencephalographyhuman dataimprovedinter-individual variationmoviemultimodal datamultimodalityneural circuitneural modelnonhuman primatespatiotemporal
项目摘要
ABSTRACT: This Conte Center proposal seeks to elucidate the role of slow brain network fluctuations
(SBNFs) across species and scales, and to establish computational models of neural circuit dynamics that
characterize SBNFs. Data collected in Projects 1-3 will span multiple modalities (EEG, fMRI, ECoG/LFP, and
single-unit recordings) and species (humans and nonhuman primates). The overarching goal of the Multimodal
Data Analysis & Integration Core (Core-B) is to address the challenge of integrating data across these multiple
modalities and analyses. To achieve this goal, Core-B will apply and develop multimodal alignment
frameworks that establish a common space for analysis across modalities, individuals, and species (to be used
in Projects 1-3), as well as integrate these data to facilitate computational modeling of neural dynamics (to be
used in Project 4). Aim 1 will leverage the functional alignment framework to construct a common space for
different modalities within- and between-subjects. Aim 2 will refine the cross-species alignment using the
functional data from the common tasks to provide the spatial transformation to link human data in Projects 1-2
and macaque data in Project 3. In addition to optimizing cross-modal and cross-species alignment, Aim 3 will
construct a framework for decomposing brain dynamics into spatiotemporal states and state-transitions derived
jointly from EEG, fMRI, and physiological signals. We will also leverage the cross-species transformation
between humans and macaques in Aim 2 to delineate the matched states across species and characterize the
species-specific temporal configurations. This framework will provide a state-space in which brain dynamics
and their causal properties can be interrogated across individuals and species. The alignment approach and
aligned data generated by this Core will be applied to the curated, quality-checked outputs received from Core
C after appropriate preprocessing (determined by domain experts from the individual Projects) and will be
distributed to Projects 1-4.
摘要:康特中心的这一建议旨在阐明大脑网络缓慢波动的作用
(SBNFs)跨物种和规模,并建立神经回路动力学的计算模型,
表征SBNF。项目1-3中收集的数据将跨越多种模式(EEG、fMRI、ECoG/LFP和
单单位记录)和物种(人类和非人类灵长类动物)。多式联运的总体目标
数据分析和集成核心(Core-B)是为了解决跨这些多个
模式和分析。为了实现这一目标,Core-B将应用和开发多模式对齐
为跨模式、个体和物种的分析建立共同空间的框架(将使用
在项目1-3),以及整合这些数据,以促进神经动力学的计算建模(将
在项目4中使用)。目标1将利用功能调整框架,
不同的模式内-和之间-科目。目标2将使用
公共任务中的功能数据,以提供空间转换,从而链接项目1-2中的人类数据
和猕猴的数据除了优化跨模态和跨物种比对,目标3还将
构建一个框架,用于将大脑动力学分解为时空状态和状态转换
脑电功能磁共振成像和生理信号我们还将利用跨物种转化
目标2中人类和猕猴之间的关系,以描绘物种之间的匹配状态,并描述
物种特有的时间结构。这个框架将提供一个状态空间,在这个状态空间中,
它们的因果性质可以在个体和物种之间进行研究。调整方法和
由该核心生成的对齐数据将应用于从核心接收的策划的、质量检查的输出
C在适当的预处理(由各个项目的领域专家确定)后,
分配给项目1-4。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ting Xu其他文献
Role of nasal microbiota in regulating host anti-influenza immunity in dogs
- DOI:
10.1186/s40168-025-02031-y - 发表时间:
2025-01-27 - 期刊:
- 影响因子:12.700
- 作者:
Jinzhu Geng;Yuhao Dong;Hao Huang;Xia Wen;Ting Xu;Yanbing Zhao;Yongjie Liu - 通讯作者:
Yongjie Liu
Ting Xu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ting Xu', 18)}}的其他基金
An Alignment Framework For Mapping Brain Dynamics and Substrates of Human Cognition Across Species
用于绘制跨物种大脑动态和人类认知基础的对齐框架
- 批准号:
10360863 - 财政年份:2021
- 资助金额:
$ 32.15万 - 项目类别:
Micellar Nanocarriers with Controlled Multivalent Ligand Presentation
具有受控多价配体呈现的胶束纳米载体
- 批准号:
8695347 - 财政年份:2013
- 资助金额:
$ 32.15万 - 项目类别:
Micellar Nanocarriers with Controlled Multivalent Ligand Presentation
具有受控多价配体呈现的胶束纳米载体
- 批准号:
8583975 - 财政年份:2013
- 资助金额:
$ 32.15万 - 项目类别:
相似海外基金
Linking Epidermis and Mesophyll Signalling. Anatomy and Impact in Photosynthesis.
连接表皮和叶肉信号传导。
- 批准号:
EP/Z000882/1 - 财政年份:2024
- 资助金额:
$ 32.15万 - 项目类别:
Fellowship
Digging Deeper with AI: Canada-UK-US Partnership for Next-generation Plant Root Anatomy Segmentation
利用人工智能进行更深入的挖掘:加拿大、英国、美国合作开发下一代植物根部解剖分割
- 批准号:
BB/Y513908/1 - 财政年份:2024
- 资助金额:
$ 32.15万 - 项目类别:
Research Grant
Simultaneous development of direct-view and video laryngoscopes based on the anatomy and physiology of the newborn
根据新生儿解剖生理同步开发直视喉镜和视频喉镜
- 批准号:
23K11917 - 财政年份:2023
- 资助金额:
$ 32.15万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Genetics of Extreme Phenotypes of OSA and Associated Upper Airway Anatomy
OSA 极端表型的遗传学及相关上呼吸道解剖学
- 批准号:
10555809 - 财政年份:2023
- 资助金额:
$ 32.15万 - 项目类别:
computational models and analysis of the retinal anatomy and potentially physiology
视网膜解剖学和潜在生理学的计算模型和分析
- 批准号:
2825967 - 财政年份:2023
- 资助金额:
$ 32.15万 - 项目类别:
Studentship
Computational comparative anatomy: Translating between species in neuroscience
计算比较解剖学:神经科学中物种之间的翻译
- 批准号:
BB/X013227/1 - 财政年份:2023
- 资助金额:
$ 32.15万 - 项目类别:
Research Grant
Doctoral Dissertation Research: Social and ecological influences on brain anatomy
博士论文研究:社会和生态对大脑解剖学的影响
- 批准号:
2235348 - 财政年份:2023
- 资助金额:
$ 32.15万 - 项目类别:
Standard Grant
Development of a novel visualization, labeling, communication and tracking engine for human anatomy.
开发一种新颖的人体解剖学可视化、标签、通信和跟踪引擎。
- 批准号:
10761060 - 财政年份:2023
- 资助金额:
$ 32.15万 - 项目类别:
Understanding the functional anatomy of nociceptive spinal output neurons
了解伤害性脊髓输出神经元的功能解剖结构
- 批准号:
10751126 - 财政年份:2023
- 资助金额:
$ 32.15万 - 项目类别:
Anatomy and functions of LTP interactomes and their relationship to small RNA signals in systemic acquired resistance
LTP相互作用组的解剖和功能及其与系统获得性耐药中小RNA信号的关系
- 批准号:
BB/X013049/1 - 财政年份:2023
- 资助金额:
$ 32.15万 - 项目类别:
Research Grant














{{item.name}}会员




