Coordination of fatty acid metabolism following neonatal brain injury from preterm birth

早产新生儿脑损伤后脂肪酸代谢的协调

基本信息

  • 批准号:
    10641924
  • 负责人:
  • 金额:
    $ 39.55万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-06-15 至 2027-05-31
  • 项目状态:
    未结题

项目摘要

Fatty acids (FAs) are essential in the developing brain for myelination, neurogenesis, and lipid membrane turnover. During fetal and early postnatal brain development, FA synthesis in the brain is necessary for rapid structural brain growth. However, FAs can also serve as a source of energy. Recent evidence suggests that neural stem and progenitor cells rely largely on FA oxidation for energy. The question is whether the balance between FA synthesis and oxidation (FA metabolism) in the brain shifts after injury. Neonatal brain injury is a major contributor to long-term neurodevelopmental delays. The response to injury and endogenous recovery phase is metabolically expensive, imposing additional energy demands and disrupting the highly orchestrated process of brain development and maturation. Therefore, there is a critical need to delineate acute and long- term metabolic adaptations after neonatal brain injury. Our preliminary results show that the neonatal injured brain from intermittent hypoxia has decreased FA composition, increased dependency on FAs as a fuel compared to other substrates and increased FA oxidation. In addition, FA mobilization for oxidation is increased days after injury. Based on these results, we hypothesize that metabolic adaptations after neonatal brain injury directly perturb the balance of FA synthesis and oxidation, thereby disrupting the timely developmental trajectory of brain growth and maturation. We will test our hypothesis in three aims. In the first aim, we will determine temporal and spatial contributions of FA metabolism after neonatal brain injury. This aim will delineate time- and region-specific FA composition in the hippocampus, white matter, and subventricular zone. The region-specific composition of FAs and substrates will be measured with tandem mass spectrometry and MALDI- mass spectrometry imaging. We will measure protein, RNA, and metabolic flux in region- and cell-specific populations. Studies will be performed that will measure dependency, capacity, and flexibility to utilize FAs and other substrates from different brain regions and time points after injury. In the second aim, we will determine whether time-specific alteration of FA metabolism in progenitor cells disrupts their normal developmental trajectory. We will specifically remove an obligate gene responsible for FA synthesis or oxidation in neural progenitor cells to answer the question whether FA metabolism regulates neural progenitor cell activity in the neurogenic niches. In the third aim, we will test whether brain FA oxidation after neonatal brain injury is adaptive or maladaptive. This aim will study the role of FA oxidation in the developing brain and after neonatal brain injury using pan- brain-specific loss of either the obligate gene in FA oxidation or the gene responsible for the rate-limiting step of FA translocation into the mitochondria. Overall, this project will delineate the time-course and contribution of FAs toward metabolic flexibility. The outcomes of this study will inform the science of FA metabolism and guide development of new therapeutic targets aimed at balancing metabolic demands after neonatal brain injury.
脂肪酸(FAs)是大脑发育中髓鞘形成、神经发生和脂质膜所必需的

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Joseph Scafidi其他文献

Joseph Scafidi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Joseph Scafidi', 18)}}的其他基金

Coordination of fatty acid metabolism following neonatal brain injury from preterm birth
早产新生儿脑损伤后脂肪酸代谢的协调
  • 批准号:
    10539030
  • 财政年份:
    2022
  • 资助金额:
    $ 39.55万
  • 项目类别:
Bioenergetic Failure Underlies Cerebral Dysmaturity After Perinatal Brain Injury
生物能衰竭是围产期脑损伤后脑功能障碍的基础
  • 批准号:
    10240636
  • 财政年份:
    2017
  • 资助金额:
    $ 39.55万
  • 项目类别:
Bioenergetic Failure Underlies Cerebral Dysmaturity After Perinatal Brain Injury
生物能衰竭是围产期脑损伤后脑功能障碍的基础
  • 批准号:
    10328820
  • 财政年份:
    2017
  • 资助金额:
    $ 39.55万
  • 项目类别:
Mechanisms regulating KCC2 hypofunction during refractory seizures in a mouse model of ischemic neonatal seizures
缺血性新生儿癫痫发作小鼠难治性癫痫发作期间 KCC2 功能低下的调节机制
  • 批准号:
    10205121
  • 财政年份:
    2017
  • 资助金额:
    $ 39.55万
  • 项目类别:
Bioenergetic Failure Underlies Cerebral Dysmaturity After Perinatal Brain Injury
生物能衰竭是围产期脑损伤后脑功能障碍的基础
  • 批准号:
    9382739
  • 财政年份:
    2017
  • 资助金额:
    $ 39.55万
  • 项目类别:
Bioenergetic Failure Underlies Cerebral Dysmaturity After Perinatal Brain Injury
生物能衰竭是围产期脑损伤后脑功能障碍的基础
  • 批准号:
    9752675
  • 财政年份:
    2017
  • 资助金额:
    $ 39.55万
  • 项目类别:
Enhanced EGF Receptor Signaling Prevents White Matter Injury in Perinatal Hypoxia
增强的 EGF 受体信号传导可预防围产期缺氧时的白质损伤
  • 批准号:
    9098869
  • 财政年份:
    2015
  • 资助金额:
    $ 39.55万
  • 项目类别:
Enhanced EGF Receptor Signaling Prevents White Matter Injury in Perinatal Hypoxia
增强的 EGF 受体信号传导可预防围产期缺氧时的白质损伤
  • 批准号:
    8091982
  • 财政年份:
    2011
  • 资助金额:
    $ 39.55万
  • 项目类别:
Enhanced EGF Receptor Signaling Prevents White Matter Injury in Perinatal Hypoxia
增强的 EGF 受体信号传导可预防围产期缺氧时的白质损伤
  • 批准号:
    8436277
  • 财政年份:
    2011
  • 资助金额:
    $ 39.55万
  • 项目类别:
Enhanced EGF Receptor Signaling Prevents White Matter Injury in Perinatal Hypoxia
增强的 EGF 受体信号传导可预防围产期缺氧时的白质损伤
  • 批准号:
    8233981
  • 财政年份:
    2011
  • 资助金额:
    $ 39.55万
  • 项目类别:

相似海外基金

Micro-invasive biochemical sampling of brain interstitial fluid for investigating neural pathology
脑间质液微创生化取样用于研究神经病理学
  • 批准号:
    10517496
  • 财政年份:
    2020
  • 资助金额:
    $ 39.55万
  • 项目类别:
Micro-invasive biochemical sampling of brain interstitial fluid for investigating neural pathology
脑间质液微创生化取样用于研究神经病理学
  • 批准号:
    10304119
  • 财政年份:
    2020
  • 资助金额:
    $ 39.55万
  • 项目类别:
Biochemical Consequences of Regiospecific Metabolic Bias in the Brain
大脑区域特异性代谢偏差的生化后果
  • 批准号:
    10356172
  • 财政年份:
    2020
  • 资助金额:
    $ 39.55万
  • 项目类别:
Biochemical Consequences of Regiospecific Metabolic Bias in the Brain
大脑区域特异性代谢偏差的生化后果
  • 批准号:
    10159813
  • 财政年份:
    2020
  • 资助金额:
    $ 39.55万
  • 项目类别:
Micro-invasive biochemical sampling of brain interstitial fluid for investigating neural pathology
脑间质液微创生化取样用于研究神经病理学
  • 批准号:
    9885472
  • 财政年份:
    2020
  • 资助金额:
    $ 39.55万
  • 项目类别:
Micro-invasive biochemical sampling of brain interstitial fluid for investigating neural pathology
脑间质液微创生化取样用于研究神经病理学
  • 批准号:
    10090597
  • 财政年份:
    2020
  • 资助金额:
    $ 39.55万
  • 项目类别:
Biochemical Consequences of Regiospecific Metabolic Bias in the Brain
大脑区域特异性代谢偏差的生化后果
  • 批准号:
    10569574
  • 财政年份:
    2020
  • 资助金额:
    $ 39.55万
  • 项目类别:
Linking Connectomics to Biochemical Trajectories of Aging: How the Human Brain Ages Differentially in Key Regions of the Default Mode Network
将连接组学与衰老的生化轨迹联系起来:人脑默认模式网络关键区域的衰老方式如何差异
  • 批准号:
    9447437
  • 财政年份:
    2017
  • 资助金额:
    $ 39.55万
  • 项目类别:
Linking Connectomics to Biochemical Trajectories of Aging: How the Human Brain Ages Differentially in Key Regions of the Default Mode Network
将连接组学与衰老的生化轨迹联系起来:人脑默认模式网络关键区域的衰老方式如何差异
  • 批准号:
    9926788
  • 财政年份:
    2017
  • 资助金额:
    $ 39.55万
  • 项目类别:
Linking Connectomics to Biochemical Trajectories of Aging: How the Human Brain Ages Differentially in Key Regions of the Default Mode Network
将连接组学与衰老的生化轨迹联系起来:人脑默认模式网络关键区域的衰老方式如何差异
  • 批准号:
    10159810
  • 财政年份:
    2017
  • 资助金额:
    $ 39.55万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了