Using Machine Learning to Optimize User Engagement and Clinical Response to Digital Mental Health Interventions

使用机器学习优化用户参与度和对数字心理健康干预措施的临床反应

基本信息

项目摘要

PROJECT SUMMARY/ABSTRACT Digital interventions offer a highly scalable and relatively cost- and time-efficient approach to the delivery of accessible mental health services. However, evidence for efficacy comes from nomothetic group averages, overlooking the fact that a treatment that is effective for one patient may be less effective or even harmful for another. Further, guidance on matching individuals to their optimal intervention is lacking. These decisions are primarily based on clinical judgment or “trial and error,” which results in many patients receiving ineffective treatment or requiring multiple courses of treatment before achieving remission. Machine learning (ML) algorithms offer an alternative to conventional clinical decision-making by generating empirically derived precision treatment rules (PTRs) for selecting an optimal treatment. To date, research on the development of PTRs has been hindered by major design and statistical issues, including sample size limitations and lack of random assignment. The primary objective of the proposed study is to develop and test PTRs, using ML, for three evidence- based digital mental health interventions, within an existing digital healthcare system, SilverCloud Health (SC). A secondary objective is to better understand user-engagement as a mechanism of treatment response. In partnership with primary care physicians at Kaiser Permanente (KP), we will conduct a large (N = 1,800) randomized clinical trial where participants will be randomly assigned to one of three digital interventions in SC’s suite: Unified Protocol, Space from Depression, and Space for Resilience. Aim 1 will evaluate the overall effects and engagement patterns of the three digital interventions. Aim 2 will use ML to develop treatment- matching algorithms and determine the extent these precision treatment rules lead to improvements in clinical outcomes and engagement. Aim 3 will determine if user engagement and other common and specific factors (e.g., working alliance, negative thinking) are mechanisms of treatment response. The results of this study will provide a definitive answer regarding the relative effectiveness of three leading digital interventions, determine the value of developing PTRs for CBT interventions with different purported mechanisms of action, and further the understanding of common and treatment-specific mechanisms of change.
项目总结/摘要 数字干预提供了一种高度可扩展且相对具有成本和时间效益的方法, 获得心理健康服务。然而,有效性的证据来自规则组的平均值, 忽视了这样一个事实,即对一个病人有效的治疗可能对另一个病人不那么有效,甚至有害。 另此外,缺乏关于将个人与其最佳干预措施相匹配的指导。这些决定是 主要基于临床判断或“试错法”,这导致许多患者接受无效的 治疗或在达到缓解前需要多个疗程。机器学习(ML) 算法通过生成经验推导的 精确治疗规则(PTR),用于选择最佳治疗。到目前为止,关于发展的研究 PTR受到主要设计和统计问题的阻碍,包括样本量限制和缺乏 随机分配 拟议研究的主要目标是使用ML开发和测试PTR,以获得三个证据- 在现有的数字医疗保健系统SilverCloud Health(SC)中, 次要目的是更好地理解用户参与作为治疗反应机制。在 与Kaiser Permanente(KP)的初级保健医生合作,我们将进行大型(N = 1,800) 随机临床试验,参与者将被随机分配到三种数字干预措施之一, SC的套件:统一协议,抑郁空间和弹性空间。目标1将评估总体 三种数字干预措施的效果和参与模式。目标2将使用ML开发治疗方法- 匹配算法,并确定这些精确治疗规则导致临床改善的程度 成果和参与。目标3将确定用户参与度和其他常见和特定因素 (e.g.,工作联盟,消极思维)是治疗反应的机制。这项研究的结果将 提供关于三种主要数字干预措施的相对有效性的明确答案,确定 为具有不同据称作用机制的CBT干预措施制定PTR的价值,以及进一步 对常见和治疗特异性变化机制的理解。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Todd J. Farchione其他文献

Todd J. Farchione的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Todd J. Farchione', 18)}}的其他基金

Using Machine Learning to Optimize User Engagement and Clinical Response to Digital Mental Health Interventions
使用机器学习优化用户参与度和对数字心理健康干预措施的临床反应
  • 批准号:
    10442069
  • 财政年份:
    2022
  • 资助金额:
    $ 58.33万
  • 项目类别:

相似海外基金

DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 58.33万
  • 项目类别:
    Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 58.33万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 58.33万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 58.33万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 58.33万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 58.33万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 58.33万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 58.33万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 58.33万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 58.33万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了