Molecular Mechanisms of Human Homologous Recombination
人类同源重组的分子机制
基本信息
- 批准号:10641844
- 负责人:
- 金额:$ 37.52万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-12 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:AllelesBiochemicalBiochemistryChromatinChromosomesComplexDNA DamageDNA Double Strand BreakDNA RepairDNA SequenceDangerousnessDataDevelopmentDouble Strand Break RepairEnzymesExposure toGenesGenomeGoalsGrowthHumanHuman ActivitiesLearningMaintenanceMalignant NeoplasmsMeiosisMitosisMitoticModelingMolecularMolecular BiologyMotorOrganismPathway interactionsProteinsRAD54L geneRegulationResearch ProposalsSaccharomyces cerevisiaeSequence AlignmentSequence HomologsSister ChromatidVariantWorkexperimental studygenetic informationgenome integrityhomologous recombinationpresynapticpreventprogramsrepairedsegregationsingle molecule
项目摘要
SUMMARY/ABSTRACT
Organisms are constantly exposed to environmental conditions that challenge the integrity of the genome.
Loss of genomic integrity contributes to the development of most cancers. DNA double strand breaks (DSBs)
are a dangerous type of DNA damage that can lead to rapid loss of sequence information stored within the
genome. Homologous recombination (HR) is one of the primary DSB repair pathways and is predicated on
locating an undamaged DNA sequence that matches the damaged DNA sequence elsewhere in the genome.
The homologous sequence can then be used to restore the lost DNA sequence information. During normal
mitotic growth, HR preferentially repairs DSBs using sequence information stored in the sister chromatid.
Aiding in maintenance of allelic variation between genes and preventing unbalanced exchange of genetic
information between chromosomes. In contrast during meiosis the homologous chromosome becomes the
preferred DNA repair substrate. There is a large amount information on existing pathways that have evolved in
S. cerevisiae to promote DNA repair from the homologous chromosome during meiosis. However, little is
known about how homologous chromosomes are used for repair in humans. One of the key determinants in
chromosome choice during HR, is the organization of the presynaptic complex (PSC). The regulation,
formation, and activity of the human PSC is controlled by >45 proteins. However, a basic functional unit of the
PSC consists of RAD51 and associated factors (RAD54L) during mitosis, and RAD51, DMC1 and their
associated factors (RAD54L, RAD54B, HOP2-MND1) during meiosis. Understanding how these proteins
organize into active complexes during HR is a critical step in understanding how human homologous
chromosomes are used for HR. Over the course of our studies we will use biochemical and single molecule
approaches to understand the mechanism behind RAD51 and DMC1 self-segregation during meiotic PSC
formation. We will understand how DMC1 forms a meiotic homology search complex, and with cooperation of
accessory proteins, aligns DNA sequences. We will identify how meiotic homology search complexes
overcome chromatin. Finally, we will work to understand how conflicts between the two highly related motor
protein RAD54L and RAD54B may promote homologous chromosome use during human mitotic HR. In
summary, the primary goal of this research proposal will be to use molecular biology, biochemistry, and single
molecule approaches to understand how human mitotic and meiotic PSCs organize, and promote DNA
sequence alignment during HR. The data we collect from these experiments will be used to build a model for
how human homologous chromosome selection may occur during both mitotic and meiotic HR.
摘要/摘要
生物体不断暴露在挑战基因组完整性的环境条件下。
基因组完整性的丧失导致大多数癌症的发生。 DNA 双链断裂 (DSB)
是一种危险的 DNA 损伤,可能导致存储在 DNA 中的序列信息快速丢失。
基因组。同源重组 (HR) 是主要的 DSB 修复途径之一,其基础是
定位与基因组中其他地方受损的 DNA 序列相匹配的未受损的 DNA 序列。
然后可以使用同源序列来恢复丢失的DNA序列信息。正常期间
有丝分裂生长时,HR 优先使用姐妹染色单体中存储的序列信息修复 DSB。
帮助维持基因之间的等位基因变异并防止遗传的不平衡交换
染色体之间的信息。相反,在减数分裂期间,同源染色体变成
优选的DNA修复底物。有大量关于现有途径的信息,这些信息已在
酿酒酵母在减数分裂过程中促进同源染色体的 DNA 修复。然而,很少的是
了解同源染色体如何用于人类修复。的关键决定因素之一
HR 期间的染色体选择是突触前复合体 (PSC) 的组织。该规定,
人类 PSC 的形成和活性由超过 45 种蛋白质控制。然而,一个基本的功能单元
PSC 由 RAD51 和有丝分裂期间的相关因子 (RAD54L) 组成,RAD51、DMC1 及其
减数分裂期间的相关因素(RAD54L、RAD54B、HOP2-MND1)。了解这些蛋白质如何
在 HR 过程中组织成活性复合物是理解人类同源性如何形成的关键一步
染色体用于 HR。在我们的研究过程中,我们将使用生化和单分子
了解减数分裂 PSC 期间 RAD51 和 DMC1 自分离机制的方法
形成。我们将了解 DMC1 如何形成减数分裂同源搜索复合体,并与
辅助蛋白,对齐 DNA 序列。我们将确定减数分裂同源性搜索复合体如何
克服染色质。最后,我们将努力了解这两个高度相关的运动之间的冲突是如何发生的
蛋白质 RAD54L 和 RAD54B 可能促进人类有丝分裂 HR 期间同源染色体的使用。在
总之,本研究计划的主要目标是利用分子生物学、生物化学和单一方法
分子方法来了解人类有丝分裂和减数分裂 PSC 如何组织和促进 DNA
HR 期间的序列比对。我们从这些实验中收集的数据将用于构建模型
人类同源染色体选择如何在有丝分裂和减数分裂 HR 期间发生。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Rad53 regulates the lifetime of Rdh54 at homologous recombination intermediates.
- DOI:10.1093/nar/gkad848
- 发表时间:2023-11-27
- 期刊:
- 影响因子:14.9
- 作者:
- 通讯作者:
Single Molecule Imaging of DNA-Protein Interactions Using DNA Curtains.
- DOI:10.1007/978-1-0716-2847-8_10
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Rdh54 stabilizes Rad51 at displacement loop intermediates to regulate genetic exchange between chromosomes.
- DOI:10.1371/journal.pgen.1010412
- 发表时间:2022-09
- 期刊:
- 影响因子:4.5
- 作者:
- 通讯作者:
DNA curtains to visualize chromatin interactions.
DNA 窗帘使染色质相互作用可视化。
- DOI:10.1016/j.ymeth.2023.07.001
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Woodhouse,Mitchell;BrooksCrickard,J
- 通讯作者:BrooksCrickard,J
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
John Brooks Crickard其他文献
John Brooks Crickard的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('John Brooks Crickard', 18)}}的其他基金
Molecular Mechanisms of Human Homologous Recombination
人类同源重组的分子机制
- 批准号:
10271585 - 财政年份:2021
- 资助金额:
$ 37.52万 - 项目类别:
Molecular Mechanisms of Human Homologous Recombination
人类同源重组的分子机制
- 批准号:
10468788 - 财政年份:2021
- 资助金额:
$ 37.52万 - 项目类别:
相似海外基金
CAREER: Biochemical and Structural Mechanisms Controlling tRNA-Modifying Metalloenzymes
职业:控制 tRNA 修饰金属酶的生化和结构机制
- 批准号:
2339759 - 财政年份:2024
- 资助金额:
$ 37.52万 - 项目类别:
Continuing Grant
Systematic manipulation of tau protein aggregation: bridging biochemical and pathological properties
tau 蛋白聚集的系统操作:桥接生化和病理特性
- 批准号:
479334 - 财政年份:2023
- 资助金额:
$ 37.52万 - 项目类别:
Operating Grants
Diurnal environmental adaptation via circadian transcriptional control based on a biochemical oscillator
基于生化振荡器的昼夜节律转录控制的昼夜环境适应
- 批准号:
23H02481 - 财政年份:2023
- 资助金额:
$ 37.52万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Leveraging releasable aryl diazonium ions to probe biochemical systems
利用可释放的芳基重氮离子探测生化系统
- 批准号:
2320160 - 财政年份:2023
- 资助金额:
$ 37.52万 - 项目类别:
Standard Grant
Biochemical Mechanisms for Sustained Humoral Immunity
持续体液免疫的生化机制
- 批准号:
10637251 - 财政年份:2023
- 资助金额:
$ 37.52万 - 项目类别:
Structural and biochemical investigations into the mechanism and evolution of soluble guanylate cyclase regulation
可溶性鸟苷酸环化酶调节机制和进化的结构和生化研究
- 批准号:
10604822 - 财政年份:2023
- 资助金额:
$ 37.52万 - 项目类别:
Enhanced Biochemical Monitoring for Aortic Aneurysm Disease
加强主动脉瘤疾病的生化监测
- 批准号:
10716621 - 财政年份:2023
- 资助金额:
$ 37.52万 - 项目类别:
Converting cytoskeletal forces into biochemical signals
将细胞骨架力转化为生化信号
- 批准号:
10655891 - 财政年份:2023
- 资助金额:
$ 37.52万 - 项目类别:
Chemical strategies to investigate biochemical crosstalk in human chromatin
研究人类染色质生化串扰的化学策略
- 批准号:
10621634 - 财政年份:2023
- 资助金额:
$ 37.52万 - 项目类别:
EAGER: Elastic Electronics for Sensing Gut Luminal and Serosal Biochemical Release
EAGER:用于感测肠腔和浆膜生化释放的弹性电子器件
- 批准号:
2334134 - 财政年份:2023
- 资助金额:
$ 37.52万 - 项目类别:
Standard Grant