Membrane Curvature Sensing Mechanisms for Synaptic Vesicle Endocytosis
突触小泡内吞作用的膜曲率传感机制
基本信息
- 批准号:10642407
- 负责人:
- 金额:$ 38.54万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-02-15 至 2025-01-31
- 项目状态:未结题
- 来源:
- 关键词:AreaBiochemicalBiologyBrainBypassChimera organismCommunicationCoupledDataDefectElectron MicroscopyElectrophysiology (science)EndocytosisEventFunctional disorderGeneticGenetic ScreeningGoalsHealthHumanImageIn VitroKnowledgeLaboratoriesLeadLinkLipidsMaintenanceMembraneMental disordersMolecularMutationMutation AnalysisN-terminalNatural regenerationNeurodegenerative DisordersNeuronsParkinsonian DisordersPathway interactionsPhosphatidylinositolsPhosphoric Monoester HydrolasesPlayProcessProteinsRecyclingResearchRoleRouteSYNJ1 geneSignal TransductionSynapsesSynaptic TransmissionSynaptic VesiclesTestingTherapeutic InterventionWorkage relatedbaseexhaustgene functionin vivoinsightnervous system disorderneural circuitneurotransmissionneurotransmitter releasepreventprotein protein interactionsensor
项目摘要
Project Summary
Endocytosis plays a crucial role in supporting the health of the human brain. Functionally, synaptic vesicle
endocytosis allows neurons to sustain synaptic transmission without exhausting the supply of synaptic
vesicles. Structurally, endocytosis supports the maintenance of synapses and neural circuits. As a result,
defective synaptic vesicle endocytosis creates deficits in neurotransmission that underlie a wide spectrum of
neurological diseases and psychiatric disorders. The long-term goal of this study is to determine how endocytic
proteins act in concert to support diverse routes of endocytosis at synapses. Work from several laboratories
including my own has found that the curvature-sensing protein endophilin plays a critical role in synaptic
vesicle endocytosis. In this proposal, we will examine the hypothesis that curvature-sensing mechanisms guide
endocytic proteins to perform their function in various routes of endocytosis. We propose three Specific Aims.
1) We will determine the role of curvature-sensing motifs in vivo. We focus on the curvature-sensing
amphipathic helix of endophilin as it is essential for synaptic vesicle endocytosis. 2) We will study how
curvature signals are received by the downstream protein synaptojanin to support synaptic vesicle
endocytosis, and to prevent age-dependent decay of synaptic transmission. 3) We will determine the
mechanism of endophilin-independent endocytosis, an area that lacks molecular information. Through an
unbiased genetic screen, we have identified another curvature-sensing protein that acts in a parallel pathway
with endophilin. Results from these studies are expected to to push boundaries of current knowledge of
synaptic biology and to lead toward solutions for neurological disorders.
项目摘要
内吞作用在维持人脑健康方面起着至关重要的作用。从功能上讲,突触小泡
内吞作用使神经元在不耗尽突触供应的情况下维持突触传递
水泡。在结构上,内吞作用支持突触和神经回路的维持。结果,
有缺陷的突触小泡内吞作用导致神经传递功能障碍,这是一系列
神经疾病和精神障碍。这项研究的长期目标是确定内吞如何
蛋白质协同作用支持突触内吞作用的不同途径。来自几个实验室的研究
包括我自己在内的研究人员发现,曲率感应蛋白内嗜素在突触中起着关键作用
囊泡内吞作用。在这个提案中,我们将检验曲率感应机制引导的假设
内吞蛋白在不同的内吞作用途径中发挥其功能。我们提出了三个具体目标。
1)我们将确定曲率感知基序在体内的作用。我们主要研究曲率传感技术。
亲内素的两亲性螺旋,因为它是突触囊泡内吞所必需的。2)我们将研究如何
曲率信号由下游的突触素蛋白接收,以支持突触小泡
内吞作用,并防止突触传递的年龄依赖性衰退。3)我们将确定
缺乏分子信息的亲内素非依赖性内吞作用的机制。通过一个
在无偏见的遗传筛选中,我们发现了另一种以平行途径起作用的曲率感应蛋白
用内亲和素。这些研究的结果预计将推动目前对
突触生物学,并引领神经疾病的解决方案。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jihong Bai其他文献
Jihong Bai的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jihong Bai', 18)}}的其他基金
Membrane Curvature Sensing Mechanisms for Synaptic Vesicle Endocytosis
突触小泡内吞作用的膜曲率传感机制
- 批准号:
10642429 - 财政年份:2020
- 资助金额:
$ 38.54万 - 项目类别:
Membrane Curvature Sensing Mechanisms for Synaptic Vesicle Endocytosis
突触小泡内吞作用的膜曲率传感机制
- 批准号:
10227429 - 财政年份:2020
- 资助金额:
$ 38.54万 - 项目类别:
Membrane Curvature Sensing Mechanisms for Synaptic Vesicle Endocytosis
突触小泡内吞作用的膜曲率传感机制
- 批准号:
10550346 - 财政年份:2020
- 资助金额:
$ 38.54万 - 项目类别:
Membrane Curvature Sensing Mechanisms for Synaptic Vesicle Endocytosis
突触小泡内吞作用的膜曲率传感机制
- 批准号:
10642428 - 财政年份:2020
- 资助金额:
$ 38.54万 - 项目类别:
Membrane Curvature Sensing Mechanisms for Synaptic Vesicle Endocytosis
突触小泡内吞作用的膜曲率传感机制
- 批准号:
10649566 - 财政年份:2020
- 资助金额:
$ 38.54万 - 项目类别:
Membrane Curvature Sensing Mechanisms for Synaptic Vesicle Endocytosis
突触小泡内吞作用的膜曲率传感机制
- 批准号:
10503621 - 财政年份:2020
- 资助金额:
$ 38.54万 - 项目类别:
Membrane Curvature Sensing Mechanisms for Synaptic Vesicle Endocytosis
突触小泡内吞作用的膜曲率传感机制
- 批准号:
10766030 - 财政年份:2020
- 资助金额:
$ 38.54万 - 项目类别:
Membrane Curvature Sensing Mechanisms for Synaptic Vesicle Endocytosis
突触小泡内吞作用的膜曲率传感机制
- 批准号:
10765998 - 财政年份:2020
- 资助金额:
$ 38.54万 - 项目类别:
Membrane Curvature Sensing Mechanisms for Synaptic Vesicle Endocytosis
突触小泡内吞作用的膜曲率传感机制
- 批准号:
10363628 - 财政年份:2020
- 资助金额:
$ 38.54万 - 项目类别:
Molecular Mechanisms That Control the Quality of Synaptic Vesicle Recycling
控制突触小泡回收质量的分子机制
- 批准号:
10385464 - 财政年份:2018
- 资助金额:
$ 38.54万 - 项目类别:
相似海外基金
Elucidating the molecular basis and expanding the biological applications of the glycosyltransferases using biochemical and structural biology approaches
利用生化和结构生物学方法阐明糖基转移酶的分子基础并扩展其生物学应用
- 批准号:
23K14138 - 财政年份:2023
- 资助金额:
$ 38.54万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Utilizing the power of synthetic biology and De Novo design for the overexpression and biochemical stabilization of KCNA6 or Kv1.6 potassium channels in the E. coli expression system
利用合成生物学和 De Novo 设计的力量,实现大肠杆菌表达系统中 KCNA6 或 Kv1.6 钾通道的过度表达和生化稳定
- 批准号:
10666856 - 财政年份:2023
- 资助金额:
$ 38.54万 - 项目类别:
Developing synthetic chemical biology strategies for biochemical investigations and biomedical applications
开发用于生化研究和生物医学应用的合成化学生物学策略
- 批准号:
10623497 - 财政年份:2023
- 资助金额:
$ 38.54万 - 项目类别:
NSF Postdoctoral Fellowship in Biology FY 2022: Defining the biochemical mechanisms of microtubule shrinking and nucleation by combining innovative experiments and simulations
2022 财年 NSF 生物学博士后奖学金:通过结合创新实验和模拟来定义微管收缩和成核的生化机制
- 批准号:
2209298 - 财政年份:2022
- 资助金额:
$ 38.54万 - 项目类别:
Fellowship Award
An Integrated Biochemical and Structural Approach to Delineating the Biology of EWSR1
描述 EWSR1 生物学的综合生化和结构方法
- 批准号:
10665058 - 财政年份:2021
- 资助金额:
$ 38.54万 - 项目类别:
An Integrated Biochemical and Structural Approach to Delineating the Biology of EWSR1 - Multi-Mode Detection and Imaging of Biomolecular Condensates.
描述 EWSR1 生物学的综合生化和结构方法 - 生物分子凝聚物的多模式检测和成像。
- 批准号:
10797858 - 财政年份:2021
- 资助金额:
$ 38.54万 - 项目类别:
An Integrated Biochemical and Structural Approach to Delineating the Biology of EWSR1
描述 EWSR1 生物学的综合生化和结构方法
- 批准号:
10298663 - 财政年份:2021
- 资助金额:
$ 38.54万 - 项目类别:
Physiological and biochemical insights into the biology of marine vertebrates and the ecosystems within which they function
对海洋脊椎动物及其功能的生态系统的生物学的生理和生化见解
- 批准号:
RGPIN-2015-04374 - 财政年份:2019
- 资助金额:
$ 38.54万 - 项目类别:
Discovery Grants Program - Individual
Physiological and biochemical insights into the biology of marine vertebrates and the ecosystems within which they function
对海洋脊椎动物及其功能的生态系统的生物学的生理和生化见解
- 批准号:
RGPIN-2015-04374 - 财政年份:2018
- 资助金额:
$ 38.54万 - 项目类别:
Discovery Grants Program - Individual
Physiological and biochemical insights into the biology of marine vertebrates and the ecosystems within which they function
对海洋脊椎动物及其功能的生态系统的生物学的生理和生化见解
- 批准号:
RGPIN-2015-04374 - 财政年份:2017
- 资助金额:
$ 38.54万 - 项目类别:
Discovery Grants Program - Individual