A systems biology approach to elucidate the biology of immune-associated outcomes in breast cancer
阐明乳腺癌免疫相关结果生物学的系统生物学方法
基本信息
- 批准号:10644415
- 负责人:
- 金额:$ 17.32万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-03 至 2028-07-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAffectAgeAutoimmuneBRCA1 geneBedsBiologicalBiological MarkersBiologyBody mass indexBreastBreast Cancer PatientBreast OncologyCaliforniaCancer BurdenCancer CenterCaringCellsClinicalClinical DataClinical TrialsComplexComprehensive Cancer CenterComputational BiologyCopy Number PolymorphismCountryDNA RepairDNA Repair DisorderDataData SetDepartment chairDevelopmentDoctor of PhilosophyEnvironmentEthnic OriginExtracellular MatrixFacultyFamilyFluorescenceGene ExpressionGenesGeneticGenomicsGerm-Line MutationGoalsGuidelinesHeritabilityHypoxiaImmuneImmune responseImmunofluorescence ImmunologicImmunology procedureImmunotherapyIn complete remissionInstitutionInterferonsInternationalInterventionLaboratoriesLearningMachine LearningMalignant NeoplasmsMediatingMedicineMentorsMetabolicMethodologyMethodsModelingMultiomic DataMutationNeoadjuvant TherapyOutcomePathologicPathway interactionsPatientsPopulationPositioning AttributePredictive ValuePredispositionPrincipal InvestigatorPrognosisPublicationsPublishingQualifyingRaceReportingResearchResearch ProposalsResidual CancersRoleSNP genotypingSTING1 geneSamplingSan FranciscoSignal PathwaySignal TransductionSingle Nucleotide Polymorphism MapSolidSomatic MutationStromal CellsSystems BiologyT-Lymphocyte SubsetsTechnologyTestingThe Cancer Genome AtlasTherapeuticTimeTrainingTumor-infiltrating immune cellsUniversitiesWomanWorkalternative treatmentcancer clinical trialcancer genomicscareer developmentcell typechemokinecytokinedensityexome sequencingexperiencefluorescence imaginggene interactionhigh riskimmune cell infiltrateimmunological statusimmunoregulationimprovedimproved outcomein silicomachine learning algorithmmachine learning classificationmachine learning methodmachine learning modelmalignant breast neoplasmmultidisciplinarymultiple omicsneoantigensnoveloncology programoptimal treatmentspatient responsepatient stratificationpersonalized medicinepredict clinical outcomepredicting responsepredictive markerpredictive modelingprogramsreceptorresearch and developmentresponserisk varianttargeted treatmenttenure tracktherapy resistanttraittranscriptomicstranslational medicinetreatment armtreatment responsetreatment strategytrial designtumortumor immunologytumor microenvironment
项目摘要
PROJECT SUMMARY
This K01 application seeks protected time for mentored research and career development training for Dr.
Rosalyn Sayaman, PhD to successfully transition to tenure-track faculty with an independent research program
in computational and systems biology, supported by the Chair of Department of Laboratory Medicine. Leveraging
the advances in computational and Machine Learning methods and spearheading multi-omic technologies, Dr.
Sayaman seeks to develop a highly integrative research program that can bridge the gap between in-silico
research and translational medicine, with specific focus on advancing personalized medicine in breast cancer.
As a computational biologist with broad training and methodological experience, and a solid experimental
background, Dr. Sayaman is uniquely positioned to carry out this comprehensive study incorporating the parallel
multi-omic dataset for ~2000 women from the I-SPY 2 Trial. The I-SPY 2 neoadjuvant breast cancer clinical trial
is a personalized, adaptive trial designed to improve outcomes in high-risk breast cancer patients.
Dr. Sayaman’s research proposal employs computational and Machine Learning approaches to dissect
the complex interactions between intrinsic host germline and tumor somatic mutations, and extrinsic tumor
microenvironment (TME) features that mediate the tumor immune response. In Aim 1, Dr. Sayaman elucidates
the role of genomic and TME features in determining the topography of immune populations in the tumor bed. In
Aim 2, she assesses the relative predictive value of these genomic and TME features in predicting subtype-
specific response to neoadjuvant therapy, and 5-year survival in patients who do not respond to therapy. This
work has the potential to generate response-predictive biomarkers that could inform optimal treatment decisions.
To address the multi-disciplinary aspect of this study, Dr. Sayaman has assembled an exemplary team
of mentors who have complementary domains of expertise. Dr. Sayaman’s primary mentor is Dr. Laura van ‘t
Veer, the Co-Leader of the NCI-designated Breast Oncology Program (BOP) and Director of Applied Genomics
at the University of California, San Francisco (UCSF), and Chair of the I-SPY 2 Biomarker Committee. Dr. van ‘t
Veer is the inventor of the FDA-cleared MammaPrint® test included in many national and international breast
cancer guidelines. Dr. Sayaman’s co-mentors include Dr. Laura Esserman, the Director of the UCSF Breast
Care Center, the Clinical Co-Leader of the BOP, and the national Principal Investigator of the I-SPY 2 trial; Dr.
Elad Ziv, a leading cancer geneticist with expertise in statistical genetics and computational approaches in
cancer genomics; and Dr. Michael Campbell, an expert in cancer immunology, who leads the development of
multiplex Immune-Fluorescence assays for immune profiling in breast cancer. Dr. Sayaman’s proposed work
benefits from the world-class research and clinical expertise of the I-SPY 2 Trial Consortium and the rich
institutional environment of UCSF and the Helen Diller Family Comprehensive Cancer Center, one of the premier
cancer centers in the country.
项目总结
这个K01应用程序寻求有保护的时间来指导研究和职业发展培训博士。
Rosalyn Sayaman博士将通过独立研究项目成功过渡到终身教职教师
在计算和系统生物学方面,由实验室医学系主任支持。利用
在计算和机器学习方法以及引领多组学技术方面的进展。
Sayaman寻求开发一种高度综合的研究计划,可以弥合硅谷和硅谷之间的差距
研究和转化医学,特别侧重于推进乳腺癌的个性化药物。
作为一名具有广泛培训和方法论经验的计算生物学家,以及扎实的实验
背景,Sayaman博士处于独特的地位,可以开展这项综合研究
来自I-SPY 2试验的约2000名女性的多组数据集。I-SPY-2新辅助乳腺癌临床试验
是一项个性化的适应性试验,旨在改善高危乳腺癌患者的预后。
Sayaman博士的研究提案使用了计算和机器学习方法来剖析
内源性宿主种系和肿瘤体细胞突变与外源性肿瘤的复杂相互作用
微环境(TME)是调节肿瘤免疫反应的重要因素。在目标1中,萨亚曼博士阐明了
基因组和TME特征在确定肿瘤床免疫群体分布中的作用。在……里面
目的2,她评估这些基因组和TME特征在预测亚型中的相对预测价值。
对新辅助治疗的特异性反应,以及对治疗无效的患者的5年生存率。这
这项工作有可能产生反应预测生物标记物,从而为最佳治疗决策提供信息。
为了解决这项研究的多学科问题,萨亚曼博士组建了一个模范团队
拥有互补专业领域的导师。萨亚曼博士的主要导师是劳拉·范特博士
韦尔,NCI指定的乳腺肿瘤学项目(BOP)的联合负责人和应用基因组学主任
加州大学旧金山分校(UCSF)教授,I-SPY 2生物标记物委员会主席。范特医生
Veer是FDA批准的MammaPrint®测试的发明者,该测试包括在许多国内和国际乳房
癌症指南。Sayaman博士的联合导师包括加州大学旧金山分校乳房主任Laura Esserman博士
护理中心,防喷剂临床联合负责人,I-SPY 2试验的国家首席研究员;
Elad Ziv是一位领先的癌症遗传学家,在统计遗传学和计算方法方面拥有专业知识
癌症基因组学;以及癌症免疫学专家迈克尔·坎贝尔博士,他领导了
多重免疫荧光分析在乳腺癌免疫分析中的应用。Sayaman博士提议的工作
受益于i-spy 2试验联盟和RICH的世界级研究和临床专业知识
加州大学旧金山分校和海伦·迪勒家庭综合癌症中心的制度环境
全国的癌症中心。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rosalyn Wong Sayaman其他文献
Rosalyn Wong Sayaman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Hormone therapy, age of menopause, previous parity, and APOE genotype affect cognition in aging humans.
激素治疗、绝经年龄、既往产次和 APOE 基因型会影响老年人的认知。
- 批准号:
495182 - 财政年份:2023
- 资助金额:
$ 17.32万 - 项目类别:
Investigating how alternative splicing processes affect cartilage biology from development to old age
研究选择性剪接过程如何影响从发育到老年的软骨生物学
- 批准号:
2601817 - 财政年份:2021
- 资助金额:
$ 17.32万 - 项目类别:
Studentship
RAPID: Coronavirus Risk Communication: How Age and Communication Format Affect Risk Perception and Behaviors
RAPID:冠状病毒风险沟通:年龄和沟通方式如何影响风险认知和行为
- 批准号:
2029039 - 财政年份:2020
- 资助金额:
$ 17.32万 - 项目类别:
Standard Grant
Neighborhood and Parent Variables Affect Low-Income Preschool Age Child Physical Activity
社区和家长变量影响低收入学龄前儿童的身体活动
- 批准号:
9888417 - 财政年份:2019
- 资助金额:
$ 17.32万 - 项目类别:
The affect of Age related hearing loss for cognitive function
年龄相关性听力损失对认知功能的影响
- 批准号:
17K11318 - 财政年份:2017
- 资助金额:
$ 17.32万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Affect regulation and Beta Amyloid: Maturational Factors in Aging and Age-Related Pathology
影响调节和 β 淀粉样蛋白:衰老和年龄相关病理学中的成熟因素
- 批准号:
9320090 - 财政年份:2017
- 资助金额:
$ 17.32万 - 项目类别:
Affect regulation and Beta Amyloid: Maturational Factors in Aging and Age-Related Pathology
影响调节和 β 淀粉样蛋白:衰老和年龄相关病理学中的成熟因素
- 批准号:
10166936 - 财政年份:2017
- 资助金额:
$ 17.32万 - 项目类别:
Affect regulation and Beta Amyloid: Maturational Factors in Aging and Age-Related Pathology
影响调节和 β 淀粉样蛋白:衰老和年龄相关病理学中的成熟因素
- 批准号:
9761593 - 财政年份:2017
- 资助金额:
$ 17.32万 - 项目类别:
How age dependent molecular changes in T follicular helper cells affect their function
滤泡辅助 T 细胞的年龄依赖性分子变化如何影响其功能
- 批准号:
BB/M50306X/1 - 财政年份:2014
- 资助金额:
$ 17.32万 - 项目类别:
Training Grant
Inflamm-aging: What do we know about the effect of inflammation on HIV treatment and disease as we age, and how does this affect our search for a Cure?
炎症衰老:随着年龄的增长,我们对炎症对艾滋病毒治疗和疾病的影响了解多少?这对我们寻找治愈方法有何影响?
- 批准号:
288272 - 财政年份:2013
- 资助金额:
$ 17.32万 - 项目类别:
Miscellaneous Programs














{{item.name}}会员




