Mitochondrial metabolite compartmentalization in health and disease
健康和疾病中的线粒体代谢物区室化
基本信息
- 批准号:10643941
- 负责人:
- 金额:$ 87.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-08-01 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:AdipocytesBiologicalBiological ProcessBrown FatCRISPR interferenceCRISPR-mediated transcriptional activationCarrier ProteinsCellsCuesDefectDiabetes MellitusDiseaseEnzymesEscherichia coliEukaryotic CellGoalsHealthHeartHumanInner mitochondrial membraneInsulin ResistanceKnowledgeLiposomesMammalsMapsMediatingMetabolicMetabolic DiseasesMitochondriaMitochondrial MatrixMitochondrial Membrane ProteinMolecularMusNatureObesityOrganellesOrphanPathologicPhysiologicalProcessProtein FamilyRecombinant ProteinsRegulationRoleStressSystemWorkYeastsdisease phenotypeflexibilityin vivometabolomicsreconstitutionstem
项目摘要
Project Summary
Eukaryotic cells store and utilize metabolites in different organelles – referred to as subcellular metabolite
compartmentalization. Distinct pools of metabolic enzymes and substrates provide another layer of flexibility in
metabolite utilization, thereby allowing for robust adaptation to a variety of intrinsic cues and external stress. In
turn, defects in the processes are associated with metabolic disorders, including obesity, insulin resistance, and
diabetes. One of the critical regulators of metabolite compartmentalization is mitochondrial transporters: a large
number of carrier proteins, many of which belong to the SLC25A protein family, mediate the translocation of
metabolites across the impermeable mitochondrial inner-membrane and control their availability in the
mitochondrial matrix. However, a vast majority of the mitochondrial SLC25A carrier proteins are “orphan”
transporters, i.e., their specific substrates and biological functions remain unknown.
The lack of our knowledge is primarily due to the fact that many mitochondrial membrane proteins cannot be
reconstituted correctly in the conventional experimental system, i.e., liposomes using recombinant proteins made
in E. Coli or yeast. To circumvent this issue, we developed a robust experimental platform that enables systemic
characterization of mammalian mitochondrial transporters using brown fat, one of the most mitochondria-
enriched cells. We incorporated the CRISPRi and CRISPRa system in immortalized brown adipocytes, such that
we can obtain essentially unlimited amounts of “designer mitochondria” in mice and humans. By employing the
new system, my lab has recently identified SLC25A44 as the first mitochondrial BCAA transporter in mammals,
a long-standing mystery in the field (Yoneshiro et al. Nature 2019).
This proposal aims to generate a complete functional map of mitochondrial SLC25A metabolite transporters in
mammals. To achieve this goal, we plan to apply the state-of-art metabolomics and mitochondrial-liposomes to
the brown fat-derived designer mitochondria, and to determine the specific substrates for orphan SLC25A carrier
proteins. We will further determine the physiological and pathological roles of orphan SLC25A transporters in
vivo, with an emphasis on metabolic disorders. The work resulting from this application will establish a conceptual
framework to understand the molecular regulation of mitochondrial metabolite compartmentalization, and also
provide a new roadmap for reversing disease phenotypes that stem from defects in such processes.
项目摘要
真核细胞在不同的细胞器中储存和利用代谢物-称为亚细胞代谢物
划分不同的代谢酶和底物库提供了另一层灵活性,
代谢物利用率,从而能够对各种内在线索和外部压力进行强有力的适应。在
反过来,这些过程中的缺陷与代谢紊乱有关,包括肥胖、胰岛素抵抗和
糖尿病代谢物区室化的关键调节因子之一是线粒体转运蛋白:一个大的线粒体转运蛋白。
许多载体蛋白,其中许多属于SLC 25 A蛋白家族,介导
代谢物穿过不可渗透的线粒体内膜,并控制它们在线粒体中的可用性。
线粒体基质然而,绝大多数线粒体SLC 25 A载体蛋白是“孤儿”蛋白。
转运蛋白,即,它们的特定底物和生物学功能仍然未知。
我们知识的缺乏主要是由于许多线粒体膜蛋白不能被
在常规实验系统中正确地重构,即,脂质体使用重组蛋白制成
在大肠大肠杆菌或酵母菌。为了解决这个问题,我们开发了一个强大的实验平台,
使用棕色脂肪表征哺乳动物线粒体转运蛋白,棕色脂肪是最常见的线粒体之一,
富集细胞我们将CRISPRi和CRISPRa系统整合到永生化的棕色脂肪细胞中,
我们可以在小鼠和人类中获得基本上无限量的“设计线粒体”。通过采用
新的系统,我的实验室最近确定了SLC 25 A44作为第一个线粒体BCAA转运蛋白在哺乳动物,
这是该领域长期存在的谜团(Yoneshiro et al. Nature 2019)。
该提议旨在生成线粒体SLC 25 A代谢物转运蛋白的完整功能图谱,
哺乳动物为了实现这一目标,我们计划应用最先进的代谢组学和脂质体,
棕色脂肪衍生的设计师线粒体,并确定孤儿SLC 25 A载体的特异性底物
proteins.我们将进一步确定孤儿SLC 25 A转运蛋白在肺癌中的生理和病理作用。
体内,重点是代谢紊乱。这项应用所产生的工作将建立一个概念性的
理解线粒体代谢物区室化的分子调控的框架,
提供了一个新的路线图,扭转疾病表型,源于这些过程中的缺陷。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Shingo Kajimura其他文献
Shingo Kajimura的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Shingo Kajimura', 18)}}的其他基金
Molecular Control of Brown Adipose Cell Fate and Energy Metabolism
棕色脂肪细胞命运和能量代谢的分子控制
- 批准号:
10094152 - 财政年份:2020
- 资助金额:
$ 87.5万 - 项目类别:
Post-translational control of adipose tissue remodeling and metabolic health
脂肪组织重塑和代谢健康的翻译后控制
- 批准号:
10264160 - 财政年份:2020
- 资助金额:
$ 87.5万 - 项目类别:
Mitochondrial metabolite compartmentalization in health and disease
健康和疾病中的线粒体代谢物区室化
- 批准号:
10226352 - 财政年份:2020
- 资助金额:
$ 87.5万 - 项目类别:
Mitochondrial metabolite compartmentalization in health and disease
健康和疾病中的线粒体代谢物区室化
- 批准号:
10064156 - 财政年份:2020
- 资助金额:
$ 87.5万 - 项目类别:
Mitochondrial metabolite compartmentalization in health and disease
健康和疾病中的线粒体代谢物区室化
- 批准号:
10435518 - 财政年份:2020
- 资助金额:
$ 87.5万 - 项目类别:
Post-translational control of adipose tissue remodeling and metabolic health
脂肪组织重塑和代谢健康的翻译后控制
- 批准号:
10453585 - 财政年份:2020
- 资助金额:
$ 87.5万 - 项目类别:
Mitochondrial BCAA transporter in physiology and disease
生理学和疾病中的线粒体支链氨基酸转运蛋白
- 批准号:
10318672 - 财政年份:2020
- 资助金额:
$ 87.5万 - 项目类别:
相似海外基金
Nitrous Oxide Management in a Novel Biological Process
新型生物过程中的一氧化二氮管理
- 批准号:
2789227 - 财政年份:2023
- 资助金额:
$ 87.5万 - 项目类别:
Studentship
Dynamic regulation of RNA modification and biological process
RNA修饰和生物过程的动态调控
- 批准号:
18H05272 - 财政年份:2018
- 资助金额:
$ 87.5万 - 项目类别:
Grant-in-Aid for Scientific Research (S)
Micro-Scale Biological Process Automation: Modelling, Sensing and Control
微尺度生物过程自动化:建模、传感和控制
- 批准号:
42116-2013 - 财政年份:2017
- 资助金额:
$ 87.5万 - 项目类别:
Discovery Grants Program - Individual
Micro-Scale Biological Process Automation: Modelling, Sensing and Control
微尺度生物过程自动化:建模、传感和控制
- 批准号:
42116-2013 - 财政年份:2016
- 资助金额:
$ 87.5万 - 项目类别:
Discovery Grants Program - Individual
Organizing the Waterloo Biofilter biological process for treating wastewater concentrated by extreme water conservation plumbing
组织滑铁卢生物过滤器生物工艺处理通过极端节水管道浓缩的废水
- 批准号:
479764-2015 - 财政年份:2015
- 资助金额:
$ 87.5万 - 项目类别:
Engage Grants Program
Micro-Scale Biological Process Automation: Modelling, Sensing and Control
微尺度生物过程自动化:建模、传感和控制
- 批准号:
42116-2013 - 财政年份:2015
- 资助金额:
$ 87.5万 - 项目类别:
Discovery Grants Program - Individual
Development of Biological Process for VOC treatment
VOC处理生物工艺的开发
- 批准号:
476672-2014 - 财政年份:2015
- 资助金额:
$ 87.5万 - 项目类别:
Experience Awards (previously Industrial Undergraduate Student Research Awards)
Micro-Scale Biological Process Automation: Modelling, Sensing and Control
微尺度生物过程自动化:建模、传感和控制
- 批准号:
42116-2013 - 财政年份:2014
- 资助金额:
$ 87.5万 - 项目类别:
Discovery Grants Program - Individual
Optimization of a biological process treating winery wastewater: anaerobic digestion integrated with Waterloo biofilter
处理酿酒厂废水的生物工艺优化:厌氧消化与滑铁卢生物过滤器集成
- 批准号:
463193-2014 - 财政年份:2014
- 资助金额:
$ 87.5万 - 项目类别:
Engage Grants Program
Micro-Scale Biological Process Automation: Modelling, Sensing and Control
微尺度生物过程自动化:建模、传感和控制
- 批准号:
42116-2013 - 财政年份:2013
- 资助金额:
$ 87.5万 - 项目类别:
Discovery Grants Program - Individual