Epidemiologic and Machine Learning Approaches to Frame Suicide Prevention Strategies Among Juvenile Justice Youth - 2021
流行病学和机器学习方法在少年司法青年中制定自杀预防策略 - 2021
基本信息
- 批准号:10647716
- 负责人:
- 金额:$ 12.45万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-06-16 至 2026-05-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAdolescentApplications GrantsAttentionBackCause of DeathCharacteristicsClinical TrialsCommunitiesComplexEnvironmentEnvironmental Risk FactorEpidemiologyFaceFundingFutureGoalsHealth ServicesHealthcareImplementation readinessImprisonmentIndividualIntakeInterventionJusticeKnowledgeLinkLongitudinal cohort studyMachine LearningMental HealthMental Health ServicesModelingNational Institute of Mental HealthPersonsPoliciesPopulationPreventionPrevention ResearchPrevention strategyProceduresProcessPublic HealthQualitative ResearchRecommendationResearchResearch MethodologyResearch PriorityResourcesRiskServicesStructureSuicideSuicide preventionSystemTechniquesTimeTrainingTraining SupportTranslatingUnderserved PopulationUnited StatesVictimizationViolenceVulnerable PopulationsYouthadvanced analyticsagedcareercontextual factorscourtdata integrationeffectiveness evaluationevidence basehealth care servicehigh riskimplementation barriersimplementation frameworkimplementation scienceimprovedinnovationinnovative technologiesinsightjuvenile justice systemmachine learning modelnovelpreventive interventionreducing suiciderisk predictionrisk prediction modelsegregationskill acquisitionskillssuicidalsuicidal behaviorsuicidal risksuicide rate
项目摘要
PROJECT TITLE
Epidemiologic and Machine Learning Approaches to Frame Suicide Prevention Strategies Among Juvenile
Justice Youth
PROJECT SUMMARY / ABSTRACT
Suicide is the second leading cause of death among youth aged 10-24 years in the U.S. One population
found to have higher rates of suicidal behavior is youth incarcerated in the juvenile justice system. While
progress has been made to reduce suicide for youth within juvenile correctional facilities, minimal
consideration has been given to the risk for suicide in youth after incarceration. Previously incarcerated
youth face numerous challenges reintegrating back into the community which can increase their risk for
suicidal behavior. Estimates further suggest that 60% to 80% of youth involved in the justice system have
significant mental health issues, and time spent in the system can exacerbate these conditions. The unmet
need for mental health services by youth involved with the justice system is also a serious problem. Despite
the recognized risk in this vulnerable population, evidence-based suicide prevention strategies are not
integrated as part of routine reentry services for youth released from confinement. Even less is known about
successful approaches to implement these strategies in juvenile justice systems. To address this gap, the
proposed study uses innovative machine learning techniques to develop a risk prediction model
incorporating youth characteristics and contextual factors associated with confinement (violence,
victimization, segregation /isolation practices, health care services) to more accurately assess suicide risk in
youth following incarcerated. Guided by these findings and a structured implementation science framework,
this proposal will also conduct a pre-intervention assessment with key stakeholders to validate the utility of
the machine learning model to inform intervention selection. Consideration will be given to potential
facilitators and barriers to integrating the model into practice, and when, how, and where to intervene in the
juvenile justice process. Achieving the aims of this proposed study will provide targeted intervention
recommendations for suicide prevention among at-risk youth in the juvenile justice system. This proposal
will also support the training of Dr. Ruch, who is devoted to a research career to reduce suicide in youth
involved with justice system. Dr. Ruch’s training plan includes: (1) acquiring skills in machine learning and
forecast modeling techniques to more accurately identify suicide risk and inform targeted preventions for
youth in the justice system (2) enhancing knowledge of suicide prevention interventions, including health
service systems to understand how health care practices and policies may facilitate or impede intervention
for youth involved with the justice system and (3) strengthening skills in implementation science and
advanced qualitative research methods to bridge the gap between research and practice. This line of inquiry
will further the field of youth suicide research by introducing innovative technological approaches for suicide
prevention in a significantly high-risk and underserved population, while also generating new insights about
the distinct implementation challenges in the potentially resource constrained juvenile justice system.
项目名称
流行病学和机器学习方法在青少年中制定自杀预防策略
正义青年
项目总结/摘要
自杀是美国10-24岁青少年死亡的第二大原因。
被发现有较高自杀行为率的是被关押在少年司法系统中的青少年。而
在减少青少年管教设施内的青少年自杀方面取得了进展,
已考虑到青年人在监禁后自杀的风险。曾被监禁
青年面临着许多重返社会的挑战,这可能增加他们的风险,
自杀行为估计还表明,60%至80%的司法系统所涉青年
严重的心理健康问题,以及在系统中花费的时间可能会加剧这些情况。未满足的
司法系统所涉青年对心理健康服务的需求也是一个严重问题。尽管
这一脆弱人群中公认的风险,基于证据的自杀预防策略不是
作为解除监禁青年重返社会的例行服务的一部分。更少有人知道
在少年司法系统中实施这些战略的成功方法。为了弥补这一差距,
拟议的研究使用创新的机器学习技术来开发风险预测模型
结合青年特点和与监禁有关的背景因素(暴力,
受害,隔离/隔离做法,医疗保健服务),以更准确地评估自杀风险,
年轻人被监禁后。在这些调查结果和结构化的实施科学框架的指导下,
该提案还将与关键利益相关者一起进行干预前评估,以验证
机器学习模型为干预选择提供信息。将考虑潜在的
促进者和障碍,将模式纳入实践,以及何时,如何,以及在何处进行干预,
少年司法程序。实现这项拟议研究的目标将提供有针对性的干预措施
关于预防少年司法系统中高危青年自杀的建议。这项建议
还将支持鲁赫博士的培训,鲁赫博士致力于减少青年自杀的研究事业
与司法系统有关。Ruch博士的培训计划包括:(1)获得机器学习技能,
预测建模技术,以更准确地识别自杀风险,并为有针对性的预防提供信息,
司法系统中的青年(2)提高对自杀预防干预措施的认识,包括健康
服务系统,以了解卫生保健做法和政策如何促进或阻碍干预
为参与司法系统的青年提供培训;(3)加强执行科学和
先进的定性研究方法,以弥合研究与实践之间的差距。这一调查线索
将通过引入创新的自杀技术方法,
在高风险和服务不足的人群中进行预防,同时也产生了关于以下方面的新见解:
在资源可能有限的少年司法系统中,存在着明显的执行挑战。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Donna Ruch其他文献
Donna Ruch的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Donna Ruch', 18)}}的其他基金
Epidemiologic and Machine Learning Approaches to Frame Suicide Prevention Strategies Among Juvenile Justice Youth - 2021
流行病学和机器学习方法在少年司法青年中制定自杀预防策略 - 2021
- 批准号:
10449572 - 财政年份:2022
- 资助金额:
$ 12.45万 - 项目类别:
相似海外基金
Exploring the mental health and wellbeing of adolescent parent families affected by HIV in South Africa
探讨南非受艾滋病毒影响的青少年父母家庭的心理健康和福祉
- 批准号:
ES/Y00860X/1 - 财政年份:2024
- 资助金额:
$ 12.45万 - 项目类别:
Fellowship
Scaling-up co-designed adolescent mental health interventions
扩大共同设计的青少年心理健康干预措施
- 批准号:
MR/Y020286/1 - 财政年份:2024
- 资助金额:
$ 12.45万 - 项目类别:
Fellowship
Shared Spaces: The How, When, and Why of Adolescent Intergroup Interactions
共享空间:青少年群体间互动的方式、时间和原因
- 批准号:
ES/T014709/2 - 财政年份:2024
- 资助金额:
$ 12.45万 - 项目类别:
Research Grant
Social Media Mechanisms Affecting Adolescent Mental Health (SoMe3)
影响青少年心理健康的社交媒体机制 (SoMe3)
- 批准号:
MR/X034925/1 - 财政年份:2024
- 资助金额:
$ 12.45万 - 项目类别:
Fellowship
Parent-adolescent informant discrepancies: Predicting suicide risk and treatment outcomes
父母与青少年信息差异:预测自杀风险和治疗结果
- 批准号:
10751263 - 财政年份:2024
- 资助金额:
$ 12.45万 - 项目类别:
Adolescent sugar overconsumption programs food choices via altered dopamine signalling
青少年糖过度消费通过改变多巴胺信号来影响食物选择
- 批准号:
BB/Y006496/1 - 财政年份:2024
- 资助金额:
$ 12.45万 - 项目类别:
Research Grant
The Impact of Online Social Interactions on Adolescent Cognition
在线社交互动对青少年认知的影响
- 批准号:
DE240101039 - 财政年份:2024
- 资助金额:
$ 12.45万 - 项目类别:
Discovery Early Career Researcher Award
Resilience Factors, Pain, and Physical Activity in Adolescent Chronic Musculoskeletal Pain
青少年慢性肌肉骨骼疼痛的弹性因素、疼痛和体力活动
- 批准号:
10984668 - 财政年份:2024
- 资助金额:
$ 12.45万 - 项目类别:
Augmented Social Play (ASP): smartphone-enabled group psychotherapeutic interventions that boost adolescent mental health by supporting real-world connection and sense of belonging
增强社交游戏 (ASP):智能手机支持的团体心理治疗干预措施,通过支持现实世界的联系和归属感来促进青少年心理健康
- 批准号:
10077933 - 财政年份:2023
- 资助金额:
$ 12.45万 - 项目类别:
EU-Funded
Family-Focused Adolescent & Lifelong Health Promotion (FLOURISH)
以家庭为中心的青少年
- 批准号:
10050850 - 财政年份:2023
- 资助金额:
$ 12.45万 - 项目类别:
EU-Funded














{{item.name}}会员




